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An electron spin aligned with a static magnetic field changes its
orientation when subjected to a time-varying magnetic field which is
directed perpendicular to the static magnetic field. This well-known
phenomenon is readily calculated when the time-varying magnetic
field is circularly polarized; however, the evolution of the spin-state
wavefunctions becomes much more difficult to calculate when the
time-varying magnetic field is linearly polarized. For linear polariza-
tion and isolated spins, an analytic solution has been derived for the
dynamical spin-state wavefunctions. Part of the solution procedure
relies on an expansion using a small parameter, which is the ratio of
the amplitude of the time-varying magnetic field to the static mag-
netic field. To verify the validity of the expansion technique, a nu-
merical solution of the basic equations is compared to the analytic
solution. Results are found to agree to better than 10% for exact
resonance and better than 5% in general. © 1999 Academic Press

Key Words: electron spin resonance; ESR; electron spin transi-
tion; analytic electron spin solution; fermion spin transition; ro-
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ples are transitions between two spin levels influenced by a sm
quadrupole interaction, and the problem of the populations of tw
states that include electronic and nuclear spin. A two-level atom
considered by LevensoB)(for the application of laser spectroscopy.
He derives a master equation for the transition between levels
the density matrix formulation which reduces (upon setting=
p2> = 0) to the mathematically equivalent set of equations that wi
be applied later to electron spin. Letokhov and Chebotagev (
consider an isolated two-level system ignoring relaxation an
damping and again derives the mathematically equivalent set
equations later applied to electron spin. Any system that has t
mathematically equivalent set of equations as those for electr
spin will also have the same solution. It is only necessary t
interpret the electron spin solution in terms of nuclear spin, a su
of electron and nuclear spins, or elements of a density matrix.
The general physical model under consideration in this wor

is a two-level system immersed in a static magnetic field an
also subject to a perpendicular time-varying field. The perpel
dicular time-varying magnetic field causes transitions betwee
the two energy levels. In particular, for particles with spin

Properties of matter have been studied for decades using efétch as an electron, there can only be two possible spin sta
tromagnetic resonances. One of the typical examples of this #fith respect to a direction in space defined by a static magne
deavor is the study of properties of matter utilizing the transitidi!d. In either of these states, when subject to a time-varyin
between two energy levels. Early work in this area was done Bgrpendicular magnetic field, the electron spin can change |
Feynman I_) in which it was shown that a geometrica| represe@.fientation. The time dependence of this behavior is readil
tation can be ascribed to the two-level Satinger equation. For calculated for a time-varying, circularly polarized perpendicu
magnetic interaction with a spinsystem, he demonstrated thatar field as shown by Rabb}. When the perpendicular field is
the three-dimensional geometric representation reduces to phifearly polarized, the evolution of the state occupations be
cal space. This means techniques developed for the spstem comes much more difficult to calculate. Due to the relative eas
can be adapted to other two-level problems, where the th@fesolving the circularly polarized casé)( many researchers
dimensions are no longer in general physical space. In otférl? use the rotating-wave approximation (RWA). The
words, the classical vector model for spin precession appliesRYVA is not invoked when a system is modeled with a drive
any two-level transition, subject only to several restrictions on th@at is truly circularly polarizeds, 6). The RWA is used when
interaction matrix elements. Consistent with this viewpointhe time-varying perpendicular field is truly linearly polarized
Abragam ) describes the general problem of two levels couplednd it is represented as being circularly polarized.
by an RF field, where he introduces by analogy the notion of A linearly polarized field can be decomposed into two circu

fictitious spin and fictitious magnetic field. Several of his exantarly polarized fields, rotating in opposite directions. Because tf
response to the two circularly polarized fields can be considert

tWork was performed under the auspices of the Department of Energys'gparatew, there are two common justifications for the RWA. Th

Lawrence Livermore National Laboratory under Contract W-7405-ENG-4?. st iustification is that onlv one of the two circularly polarized
The U.S. Government'’s right to retain a nonexclusive royalty-free license H J Yy y P

and to the copyright covering this paper, for governmental purposes, is 4&ldS IS strongly.interacting near resonance,.ar!d the other circ
knowledged. larly polarized field can be neglected).( This is reasonable
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because the spin precesses around the direction established byltie& solution is written as an expansion in a parameter th
static magnetic field. Only one of the circularly polarized fielddepends on the magnitude of the deviation of the driver frequen
rotates in the precession direction. The second justification relfesm resonance and also depends on the magnitude of the ell
on time scales. As explained by Gauttefyal. (18), the RWA is tically polarized field. They also solve for a function that deter.
valid if the interaction term is averaged over a time much longetines the ratio of the probability amplitudes, rather than th
than the period of the time-varying field, but much shorter than tivedividual probability amplitudes. In this work, a solution is
state evolution time. derived for the individual probability amplitudes separately. Thi
The RWA is useful; however, it is not universally applicableprocedure avoids difficulties related to the fact that the ratio ¢
The experiments of Dodét al. (19) are an extreme situation probability amplitudes is singular when every spin is definitely ir
where the ratio of perpendicular time-varying magnetic field to tlmme state. The solution derived in this work relies on an expansit
static field is varied from a small value all the way up to 4. Fquarameter that only depends on the ratio of the magnitude of tl
small values of the ratio, Dodd found that the RWA was satisfatime-varying magnetic field to the magnitude of the static mag
tory, but at large values he observed that the spectrum changetic field. There is no linkage of the frequency of the time:
dramatically. In early work, Bloch and Siegef0f showed the varying field to the expansion parameter.
resonant frequency shifts when the full field is considered, ratherin many circumstances, electron beams are transported ir
than just the RWA. While investigating the Bloch—Siegert shiftnagnetic field produced by solenoids. The primary direction c
Wei et al. (21) demonstrated that the Autler—Townes energy leviie magnetic field produced by a solenoid defineszthgis. In
splitting (22) is asymmetric and that the asymmetry can be attrilgeneral then, a transported electron will have a spin that is in ol
uted to the inclusion of the full driver field, rather than just usingf two possible states associated with #hdirection defined by
the RWA. The RWA in this case incorrectly predicts that ththe magnetic field produced by a solenoid. If, in addition, there |
energy level splitting is perfectly symmetric. In a study of a single time-varying magnetic field perpendicular to théirection, an
mode laser, Vyas and Singk3j found both transient and secularelectron undergoes transitions between these two states. Poss
effects when their analysis included the full linear polarizatiomxperimental arrangements consist of applying the perpendicu
rather than the RWA. In a study of a related set of three couplathgnetic field with a linearly polarized RF field, or an oscillating
equations, Milonniet al. (24) showed that a two-level atomdipole magnet, which also corresponds to the case of line
interacting with an electric field can exhibit chaotic behavior. Heolarization. It is desirable to diagnose electron particle bean
further determined that the RWA of the same set of equationdich are immersed in a magnetic field without disturbing the
does not manifest chaos. Drummor2&)(found he could not use transport of the beam. One of the attributes of the beam that c
the RWA since he was concerned with detector response e examined with minimal impact on the transport is the electro
ultrafast lasers. He concluded that, on a time scale of a few cyclgsin. The spin-state wavefunction response to the perpendicu
the RWA becomes completely invalid. Fang and Zh?@) (is- diagnostic magnetic field can be related to beam properties su
covered that the combination of both circularly polarized fieldss density and beam size. In this work, a time-dependent soluti
played an important role in the solution for quantum entrogdyas been derived for the spin-state probability amplitudes as a fi
evolution. The RWA left out high-frequency amplitude modulanecessary step toward understanding how the electron spin vai
tion of the quantum entropy evolution. Clearly, all of these exvhen subjected to a perpendicular time-varying magnetic field
amples demonstrate that the RWA may inadvertently concealn Section 2, the basic spin-state equations are derived as a
physics which is revealed when the RWA is not used. of two coupled first-order equations. The derivative in each of th
In the derivation of spin-state dynamics that follows, theoupled equations is proportional to its own state wavefunctic
time-varying perpendicular field is truly linearly polarized an@nd a linear coupling term proportional to the other state with
no RWA is made. This derivation is different than previoumultiplier which scales like the ratio of the amplitude of the
derivations in several respects. A Hamiltonian that is periodpgerpendicular magnetic field to thedirected magnetic field.
in time was investigated by Shirle27), which yielded a set of Because the perpendicular time-varying magnetic field is assum
equations identical in form to those applicable to the electrém be much smaller than the steadglirected magnetic field, the
spin problem. However, in his work, Floquet's theorem wasoupling effect can be viewed as a perturbation. The linear!
invoked to express the solution of S¢tieger's equation with polarized perpendicular magnetic field can be considered to |
a Fourier series expansion leading to an infinite matrix. HBmMposed of two parts. The first part has positive phase advar
approximated the infinite matrix as a finite dimension matrias time increases, and the second part has negative phase adv
and from this form he derived eigenvalues and eigenfunctioras time increases. The source of the difficulty in obtaining the tinr
In this work, Floquet's theorem is not invoked, and no Fouriefependence of the two spin states is illustrated in Section 3, whe
series decomposition is made. an analytic solution is derived for the positive phase advance p:s
Using another approximation, the equations addressed in tbisthe linearly polarized field. Even though the positive phas
work were solved in a general model employed by Bloch aratlvance field solution can also be derived for the negative pha
Siegert 20) in which the solution for probability amplitudes isadvance field, due to the coupling, it is not possible to obtain tr
written for arbitrary elliptical polarization. This includes lineartotal perpendicular field solution from any simple combination o
polarization of the time-varying magnetic field as a limiting cas¢hese two solutions. To derive the desired solution with a linear
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applied perpendicular magnetic field, it is first necessary to fat a particular time, thef,|*> would be the transition proba-
mulate the spin equation in new variables, as explained in Sectiulity to state 2. The matrix equation in Eq. [1] can be writter
4. The actual perturbation solution for each state along with the a system of two simultaneous equations,

resonance solution is presented in Sections 5, 6, and 7. The

analytic perturbation solutions are compared to the numerical dv, _ (B

solution of the original equation in Section 8. Good agreement dr —iw, - '(2) W,cosar

between the numerical and analytic solutions is obtained, which

demonstrates the validity of the assumptions used to derive the av, . T ( B) - )
analytic perturbation solution. In Section 9, the derived analytic dr vz g)Facosaem [2]

equations are compared to solutions from previous research.
wherew, = eBy/(2m), w; = eB,/m, a = w/w,, B = w,/wy,
2. FORMULATION OF THE SPIN EQUATION andT = w,t. Note that becausB, < B, the cosart term in
Eq. [2], which is order unity, is multiplied by a paramefer

An isolated spin system characteristic of a multiampere eleghich is small compared to the order unity first term on the
tron beam interacting with a magnetic field is considered. Aight. To maintain consistency with the exclusion of spin—spit
estimate of the corresponding number of electrons in this modeleraction in Eq. [1],8 < 1; however, = 10°° so it
can be made assuming a constant current density. For a beminates the size of the spin—spin interaction. The complexi
radiusa, velocity V = v/c, and currentl the relation between involved in the solution of Eq. [2] is due to the fact that the cos
current density and charge dengitis J = 1/(ma’) = plc, where a7 term can be considered to be a sum of two time-varyin
cis the speed of light in vacuum. Rearranging this expression, #ves which have positive and negative phase advance. Th
electron number per volume is thpfe = 6.63 X 10°(1/0)(0.01/ a transform into either the negative phase or the positive pha
a)°. For a radius of 0.01 m and a current of 1 amp, the number peifvance frame can eliminate only one of the two. Having bot
volume is 6.63x 10°*/¢ m™°. Each spin interacts with the externabhases present, which is the situation for linear polarizatiol
applied magnetic field; however, there is a question of whetherresults in one direction coinciding with the precession directio
not there is a spin—spin interaction. This question is answereddfithe electron spin and thus interacting strongly. The opposi
comparing the size of the external magnetic field to the magngtisase advance component only interacts weakly.
field produced by the magnetic moment of an electron. The
magnetic field of the electron can be estimated by the ratio of the 3. SOLUTION FOR ONLY ONE DIRECTION OF
magnetic moment of the electron to the cube of a separation PHASE ADVANCE IN THE DRIVER
distance between electrons. The inverse cube root of the number _ _
per volume gives an approximation of the separation betweerBy definition, cosar = (" + e')/2 and thus as
electronsl. = 2.47 X 10 °(0/1)"*(a/0.01F". Sincel is always less discussed, Eq. [2] includes both directions of phase advanc
than 1, a reasonable approximationLis= 2.47 X 10°°. The To determine the solution resulting from the effect of just the
electron magnetic field estimate is thBff*™" = (he4mm)/L* = positive phase advance paet;”, of the complete perturbation
6.16X 10 '°. Atypical external magnetic field value would rangdgerm, for the moment consider a revised set of equations, wi
from 0.01 to 0.30 T, and therefore it would be estimated to tmsly one part of the cosine included:
about 10 larger than the electron magnetic field. Thus the gov-

erning equation does not include spin—spin interaction terms. dv, ) , .
The configuration under study is one of a steady-state mag- dr —iv, - '<2> Woe'
netic field in thez direction, in combination with a time-
varying driver field in thex direction. Using spin matrices, the dw, — v, i(B)\If glar [3]
time-dependent Schdinger equation38) becomes dr 2 2) "%
0 [, e 1 0 The form of Eq. [3] is not the RWA becauseyalirection field
T [qu] =~ 2m ( 0[0 —1] multiplying they spin matrix was excluded from Eq. [1]. Only

the x component of the perpendicular field has been include
+B COSwt[O 1] ) [‘1’1] [1] and thus the decomposition that is in view in Eq. [3] is solely
! 1 0f/[Wy) of the cosar function. After substituting new variableg, =
V.e" andg, = V,e ", Eq. [3] becomes
whereB, is the magnitude of the steady-state magnetic field in

the z direction, B, is the magnitude of the perpendicular de; B _

. . " . ; : e E DU i(a+2)r

time-varying magnetic field with frequenay, e is the magni- dr = '\ o) #®

tude of the electron charge is the electron mass, and =

—1. The functiongl, andW¥, are the probability amplitudes of % — (B) pila-27 [4]
the two states. Under the condition that the spins are in state 1 dr 2/ '
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An equation forp, is obtained by taking the derivative of the first For general values of the time, a derivative of the firs
equation in Eq. [4] and changing the dependent variahletoe*”, equation in Eq. [8] is taken to form an equation only involving
y:. The basic equation to be solved is then

d%e, ( ) de, ( B)Z(P o 5) 4 .
q..2 5 1— Y.
dp dp \2a Vi (ig cosar) d—f Ly, =0 [9]

Equation [5] has the form of the differential equation for Bessel o _ _
functions and has as its solution the product of a power of An interesting insight into the solution of Eq. [9] can be

with a Bessel functiod ((ip/2a) ). Thus, obtained by making a substitution gf, = q(7)e'®*"*,
which transforms Eq. [9] into an equation for the variadye),
o= ", [6] resulting in a form very similar to Hill's equatior29) in his

Section 18.22, Eg. [1] and Eg. [2],
wherek = (a + 2)/(2«). The order of the Bessel function and 4
power of u are determined by the selection of frequency ratio [ . . .
In like manner, a solution similar to Eq. [6] can be obtained by dr2 © (8)(8 + B* + p*cod2ar) — 4ia sinar)q =0
changingg*” to e " in Eq. [3] and again deriving an equation like [10]
Eq. [5]. Unfortunately, no combination of functions having the
form of such solutions can be made into a solution of Eq. [Z]"“”'S equation is a Mathieu-like equation which arises in the
because cosr can be written as a sum of two exponential€§ ¢-  study of the lunar perigee problem. It can be seen from Eq. [1
e “7/2, and both exponentials appear simultaneously in Eq. [#pat the behavior is like an oscillator with a frequency that has
However, the solvable form of Eq. [4] gives some insight into $mall dependence on This leads to the conclusion that ulti-
useful variable substitution, and the appropriate variable substiaately the solution must involve all harmonics &f. Further-
tion leads ultimately to a tractable solution. more, it conveys the expectation that the solufipgonsists of a
nearly harmonic oscillator solution modulated &/ 2",
4. FORMULATION OF THE SPIN EQUATION
IN NEW VARIABLES 5. PERTURBATION SOLUTION FOR vy,

Insight into the form of the desired solution is provided by the The oscillator form of Eq. [10] with3 < 8 has a small time
integral representation of the Bessel function appearing in Eq. [6]. Fairiation of the frequency, which suggests that the solution of Eq. [
example, ifc = 2 thenk = 1 andJ,(p) = (1/m) [ cos(psin® —  can be obtained using perturbation methods with a smallness par
6)de. Since argumerg depends o and cosine can be written aseter of3. Because the perpendicular magnetic field is always less th
the sum of two exponentials, it can be seen from Eq. [6] that the tatad static field, it is always true th@ < 1. To more succinctly
solution with both directions of phase advance is likely to consigipresent the perturbation solution and also avoid secularities, Eq.
of a form having an exponential of a function @f Furthermore, s converted to a driven Riccati equati@d) Eq. [1.1], by making
the sum and difference of the original spin states provides a vigh¢ substitution, logf;) = log(C,,) — i [ u,dr, whereC,, is a

into the two phase directions of the decomposed perpendicudahstant. This relation produces a first-order nonlinear equatio
magnetic field. Thus after attempting many possibilities based on

these ideas, new variablgs andy, are introduced, with defini- u ., .

tions consisting of a combination of the original variables. g, ~ (iBcosanu, —iug= —i. [11]
yi = (U; + Wy)e!#2esner The spin solutiory, is obtained by solving Eq. [11] fou, first,
y, = (W, — W,)e i(Br2asinar [7] then integrating with respect tg, and finally exponentiating.

Assuming that a particular solution can be found, the solution ¢
Eq. [11] can be written as a sum of two functians= u,, + 1y,
where the first functiony,, is a particular solution of Eq. [11].
Substituting into Eq. [11] gives the equation

The differential equations satisfied py andy, are

% = _Iy ei(ﬁla}sinm—
dr 2 @,

g 72U+ = —i, 12
%: i i(Blesinar dr (i2up; + 1B cosar)v, i [12]
dr y:€ : (8]

which must be solved by,. This is just a first-order differen-
For smallr, the form of Eq. [8] is reminiscent of Eq. [4] since (sintial equation with solution
anla =~ 7, however, the sign in the exponentials is plus and minus
and consequently the early time solution is a sum of sinusoids

with frequencies§ + VB2 + 4)/2 and VB2 + 4 — BJ/2. vi=Cpe P —ie ™ j e™dr, [13]
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whereC,, is a constant. For convenience, def@g(t) = —i  which is an analytically solvable first-order equation having
J upd7 and then solution
P.(7) = i(Bla)sin(aT) — 2Q.(7). [14] f,= D3+ D,cos 2at + iDssin 2a7, [22]

The arbitrary constant€,, and C,, provide the flexibility where
needed to specify the initial value and derivativeyef Using

Eq. [13], the reciprocal function can be expressed as D.= — 1
3 4(a?— 4)
1 d = 4+ o?
= i Py _
Vl I d'T (log[C12 I f € d’T]), [15] D4 = m
which, when substituted into the definition ¢f, leads to a D=5 o 5. [23]
modified expression for the solution (a®—4)
The equation that must be solved at or@éris
y, = e¥[Cyy — iClzf edr], [16] f
d—: — i(cosar) f, — 2if; — 2if,f, = 0, [24]

with new coefficients defined in terms of the original arbitrary

coefficients,C,; = C,;,C., and C,, = C,,. The complete which is again an analytically solvable first-order equatior
solution of Eq. [11] is determined if a particular solutier,, can having solution

be found, since this is the function that is fundamental to the

determination oP;(7) andQ,(7). A particular perturbation solu-  f; = Dgcosat + D,c0s 3ut + iDgsin at + iDgsin 3ar,
tion of Eq. [11] can be determined at each ordg,iby assuming [25]

Upy = 1+ B, + B2y + B+ - - -, [17] Where
where only terms up to third order pare kept. It is clear that 9a’ — 4a’

the series could continue out to any desired order with a 6~ (a?— 4)%(80a? — 32 — 18a")
consequent increase in complexity. It is found at orflethe

_ 2 _ 4
equation that must be solved is D, = 120"~ Sa
(a?— 4)%(80a?— 32— 18a%)
df 3_ 5
"2 cosar — 2if, = 0. [18] D. — 32a” — 16a + 9a
dr 87 (a?— 4)2(320a2 — 128 72a%)
Equation [18] is a first-order equation that can be readily — _ —16a — 48a° — 3a® [26]
solved yielding ° (a®?—4)%(320a®— 128— 72a%)"
f, = D,cosar + iD,sin aT, [19] In order that coefficient®,, Dg, andD, remain finite,a #
2. Now knowing the particular solution from the definition of
where Q,, it is found that
2
D.= a’—4 Qu(7) = —i j (1 + Bf, + B, + pfy)dr
D,= [20] B
2?47 = —iDger — <a>[iD18inaT+ D,cosaTt

It is required thatx # 2 to prevent a singular solution; the situation - D, . Ds
of a = 2 which is the resonance conditian= 2w, will be discussed +1B 5 sin 2a1 + - COS 7

later in Section 7. The equation that must be solved at @i ) ) ) ]
+ iB%Dgsin at + % B?D,sin 3at

df, o o
—— —i(cosar)f, — 2if, —if{ =0, [21]

dr + B2Dgcosart + 3B2Dgycos hf] , [27]
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whereDy, = 1 + B°D;. The Eq. [27] result can be in-
serted into Eq. [16], which leaves only one integral to
be determined to obtain the entire solution. The integra-
tion is performed by breakindg®,(7) into two integrand
parts as

_i JepldT — _i J eZiDooT[ei(B/ﬂ)SinGT_ZQI_ZiDOO‘T]dT_ [28]

The function in the square bracket in Eq. [28] is expanded to
third order inB, and the integration is performed. This proce-
dure is the key to avoiding an expansion in terms of Bessel
functions leading to secularities and intractable integrals. The
solution is obtained upon integrating Eq. [28] and substituting
into Eq. [16]

;=

V1= C116Q1 + ClzeQ1+2iDODT[_ % + BAlCOS aT
+ iBAsinat + B?A; + B?A,C0S T
+ B2Assin 2at + B3Ascosart + B3A,cos T

+ B3Agsin at + B3Agsin 3ar]. [29]

In EqQ. [29], every term in the square bracket is bounded, and
the real part ofQ,(7) consists solely of trigonometric func-
tions, which means as— « the magnitude of, is bounded.
Consequentlyy, is normalizable. Also as a check, in the limit
as B — 0, in Eq. [29] the proper form of the solution is
recovered compared to the solution of Eq. [9] wigeis set to
zero,y, = C,e " — (3)C,e". The first-order coefficients in
Eq. [29] are defined as

Ag

A Do 4D,
17 4-a? a(d- a?d
2D 2D
A= 4 ° [30]

4—012_01(4—012)’

whereD, = 1 + 2D,. The coefficients in Eq. [29] that are
second order irB are
D} D,

Ds
*"8a? 227 2

5 [32] to

1 4D,D, D2 4D} 4Ds
A4_8—8a2[ o« "o e TPTL
1 D2 4D, D, 4D% 4D,
As—s—saz[a‘ o T a a4
[31]

A6:

The coefficients in Eq. [29] that are third order nare

1 DD, D3 D¢ D3 8D,D,
4— a?| 2a®  8a? 2a? 4 — o?
32D,D, 4D,D, 2D3 N DD,
a4 — a?) « al a?
D,D, D,D; 2D,Ds 4D,
a  2a  a? + P
1 3D 12D3D, 36D,D3 16D3
96 — 216a2| a? = a?
24D,D 72D,D 36D,D
_ g 4y 2Da oUs
a o a
48D,D4 32D,
o2 7
1 D} DD, D, D2 D3 16D,D,
i-a?4a® d?  o® Tar T d-a?
i1eb,b; 2D,D; DD, 2D,D,
+ - - - 2
o o 2a o'
D,D D.D 4D
+ 2Dg+ ot 5—6}
o o o
1 9D2D, D3 12D,D3 12D3
48 — 108a? a? a® ad + a?
18D,D 24D.,D 12D,D
bt T 24D - T
a o a
36D,D 16D
et et 7] [32]
a a

6. PERTURBATION SOLUTION FOR vy,

In order to obtairy,, a second-order equation similar to Eq.
[9] must be solved.

d’, . dy,
deer (i cosar) —— +

dr [33]

y2: 0.

It is possible to proceed as described previously in Egs. [11

obtainy,. By making the substitution, logt) =

log(C,) — i J u.dr, Eq. [33] is converted to a driven Riccati
equation, wheréC,, is a constant and this relation then gives

du, - :
—— + (iB cosarT)u, — ius = —i.

dr [34]

The solution fory, is obtained by solving Eq. [34] fau, first,

then integrating with respect tg and finally exponentiating.

In order for theA, andA; coefficients to remain finitec # 1.

The solution of Eq. [34] can be written as a sum of twc



ELECTRON SPIN TRANSITION SOLUTION FOR ISOLATED ELECTRONS 115

functionsu, = u,, + 1/v,, where the first functiony,,, is a The Eq. [40] result can be substituted into Eq. [38], whicl

particular solution of Eq. [34]. Similar to the previous discudeaves, as before, only one integral to be determined to get t

sion, the equation satisfied lvy leads to the solution entire solution. The integration is performed by breakim(r)
into two integrand parts as

V,=Cpe ™ —ie ™ | efdr, [35] , o _
_| ePsz — _| eZ'DODT[e’KB/O‘)Sm0‘7’2Q2’2|D007]d7_ [41]

whereC,, is a constant. Defin®,(7) = —i [ up,dr, and then . . .
The function in the square bracket in Eq. [41] is expanded t

third order inB, and the integration is performed. Upon inte-

Po(7) = —i(Bla)sin(ar) — 2Q(7). [36]  grating Eq. [41] and substituting into Eq. [38],

Using Eg. [35], the part of the total solution given by the

. . = Ce% + C,e® 2P —3 — BACOSaT
reciprocal function can be expressed as Y2 = L 22 [=2 = BA

— iBASINaT + B?A; + B?A,C08 T

1 d _ + B2Assin 2at — B3Ascosat — B3A,cos
o =g, (log[Cp—i J e™dr]), [37] B7AsSIN Zat = prACOSaT = BT T
Va 4 — B3Agsin at — B3Agsin 3art]. [42]
which, when substituted into the definition gf, gives the  The originally desired¥, and ¥, functions are obtained
following expression for the solution from Eq. [7],
Yi o, - Y2 -
) \I’ I ef(|B/2a)sm ar 4 22 e(lB/Za)sm aT
y, = e¥[C, — |szf e™dr], [38] 2 2
_ & —(iBl2a)sinar __ & (iB/ 2a)sin at
v, = 5 € 5 € , [43]

whereC,, = C,,C,, andC,, = C,,. The complete solution of
Eq. [34] is determined when a particular solutiag,, is found. . ) _
A patrticular perturbation solution to Eq. [34] is determined é(yh_ere t_heyl function is obtained from Eg. [29] any, is
each order in3, by assuming written in Eq. [42].

Ugp = 1- Bf, + Bzfz _ Bsfa TN [39] 7. FIRST-ORDER RESONANCE SOLUTION
The method of solution described in Section 5 relied on th
where only terms up to third order B are used. It is found at determination of a particular solution of Eq. [11]. The particulal
orderp that the equation that must be solved is the same as Eeglution that was determined is subject to the restrictiondhat
[18], the equation at ordes’ is identical to Eq. [21], and the 2 to prevent a singularity in the coefficients of the first-ortier
equation to be solved at ordgf is the same as Eq. [24]. Thus function. It was also noted that # 2 anda # 1 are additional
the previously obtainedl functions are the particular solutionrestrictions that are associated with the second- and third-brde
to Eq. [34]. Now, knowing the particular solution, it is insertedunctions. Consequently, in the first part of this section, the solt
into the definition ofQ,, and it is found tion is restricted to a first-ordgd expansion. lfx is allowed to be
2, Eq. [18] can still be solved; however, the solution is lineat. in
This is not allowed since the solution becomes unbounded. T

Q,(71) = —i f (1 - pf,+ B4, — p3y)dr deal with this issue, it is possible to begin again and solve for
more elaborate zero-order, particular solution of Eq. [11],
. B o
= —IDOOT—(a)[—lDlslnaT—DZCOSaT %—iféz i [44]

. D4 . D5
+ip 2 s 2at+ B o C0s 2t The solution of Eq. [44] can be written with an arbitrary

S Lo coefficientC,,,
— 1B“Dgsinat — 51B°Dsin 3at

1-— CsleZir

o= T4 Cpe™

— B?Dgcosat — 3B2Dgycos T |. [40] [45]
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The choice used in Eq. [17] wd3;, = 0, which then made order it is necessary to alter the formulation. This is achieve

f, = 1. Here to avoid the singularit€,;, = 1, and therf, = by introducing a new “time” coordinatg that is more natural
—i tan 1. As a result of this choice, to Eq. [8]. The objective is to permit the dependent variable t
contain as much of the characteristic behavior as possibl
, 1 Because3 is small compared to 1, the new dependent variabl
e? [Tl = (cos7)?" [46] s is equal to the time at zero order,

sought and thus onlf; is needed. The solution of Eq. [18] is S =

For the resonance solution, only the first-or@ecorrection is
ei(ﬂlz)sin ZTd’T
written using Eq. [45] withC;, = 1,

TJO([;) — iJl(g>(cos 2r — 1)
f, = e [fdr (L 4§ J (cos 2r) fae 2/ dr)

- B\ sin 4nt
e i ‘2 2l ) "o
Going out to first orderQ, = —i [ (f, + pf,)dr, and then i3 E cos(4n+2)r — 1 52
2n+1 2 2n + 1 y
te — (COS,T)ef(iBTM)HiBIS)sin 27. [48]

since the zero-order Bessel functid(B/2) has a limit of 1
Using Eq. [48] in Eqg. [16] and keeping only terms up to firsas 3 — 0, and higher order Bessel functions have a limit o
order zero. The variabla is close tor in its real part; however, it
also has an additional imaginary part. The real part is a
- , integral of cos(B/2)sin 2r) and because is always less
y; = e/ 27[ Cycoste” P —iCy, than 1, the real part always increasesamcreases. The
peculiar feature is that for a uniform increasemthe rate
of increase ok is not uniform. The imaginary part afis an
integral of sin(3/2)sin 2r) and because this function is odd
ig and periodic, the imaginary part af oscillates between a
+ 1632 (4 cost cos 2Te<iB/4>T)”_ [49] small positive and negative range having an approxima
B magnitude ofp/2. Only a small range o values is needed

. . . ] ~ to determines at all times, since
As in Section 6, the functions used to determypeare again

% [Sin re(iBl4)sin 2+ (ipl4)r

used to determing,, thus to first orderQ, = —i [ (f, —
Tot+ N by
Bf,)dr, and then f o ei(B/2)sin 2ry — J ’ i(Bl2)sin2ry - [53]
e = (cosr)e /4~ (iB/Bsin2r [50] nm 0

In other words, if the values afwere tabulated from = 0 to
r, this would be sufficient to determirgeat any value ofr.
In terms of thes variable Eq. [8] becomes

The expression of Eq. [50] fa®? is used in Eq. [38] keeping
only terms up to first order i

— —(iB/8)sin 2 ipl4
y, = e (F®sin [ C,,cosrel#ar dy,
ds = —1Yys
s ; —(iBl4)sin 2r—(ipl4)T
|C22[ sin e dy, e
ds* - _Iylv [54]

~16-p? (4 cost cos 2re“ﬁ’4”)] ] . [51]
and the second-order equation that needs to be solved
The procedure described up to this point cannot be app”edq%termmeyl 'S
obtain a second-order accurate solution. The difficulty is that
secular terms appear and the solution becomes unbounded. To d % _
) . . . . " +vy,=0. [55]
gain more information about the resonance solution at higher ds

ds
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The deceptively simple appearance of Eq. [55] results becassiguting u, = —i tan((s + s*)/2 + g) into Eq. [60] and
the second derivative is with respect to the complex conjugatenverting back to the variableresults in

s*, not just the variables. The general form of Eq. [55] is that

of an oscillator in an unusual variable space. To make further dg o
progress toward an analytic solution vf, Eq. [55] is con- dr = ! sm(

E sin 27) cogs+ s* + 2g), [61]
verted usingd/ds* = (dg/ds*)(d/ds),

2

where Eqg. [52] can be used to write the first few terms,
d?y, ds) -2
— Y+ _ —
ds? yl(d'r 0, [56] s+ s* = 273y(B/2) + J,(B/2)sin 4
N + (1/2)3,(B/2)sin 81 + - - - . [62]
where
The benefit of solving Eq. [61] rather than Eq. [60] is that the
ds\ 2 _ig sin (9 nonlinearu” term is absent. It is replaced by a milder nonlin-
dr -€ ' [57] earity, in the form of the appearance aj i the argument of
the cosine in Eq. [61]. The coefficient sig(R)sin 2r) in Eq.

In order to write Eq. [57] there must be a prescription tl)61] tq lowest order is proportional {8, and thus the first-order
equation becomes

expressr as a function ok. This can be done order by order
using the infinite series from Eq. [52]. To lowest order,

dg, . (B
4, = "isin 3 sin 27| coq271). [63]
To(S) = s/Jo(B/2), (58]
. . The solution of Eq. [63] is immediate because it was con
and to first order ing, structed to make the right side an exact derivative, and thus
_ 93812 + iay(pr2) 222 T g L od B
T1(S) = s/3o(B/2) +i3,(B )Jo(B—/Z) [59] gl=—B+Bcos<25|n 27). [64]
The process can be continued as far as desired. For examplg second-order equation,
the expression for,(s) would user,(s) as the argument to the
cosine term in Eq. [59], and then additional terms from Eq. dg, . . (B . . _
[52] would be added. 4r = 18in 5 sin 2r |sin(27)sin(2gy), [65]

The solution procedure for Eq. [56] begins by assuming log
y. = log(C,,) — i [ u,ds. The equation that results for, is

h has a right-hand side that has the periodicity of sin Rur-
en

thermore, the sign of sinR/i) is always negative and the sign
of sin((B/2)sin 2r)sin(2r) is always positive. As a result the
ds\ 2 sign of dg,/dr is always positive, and, determined by Eq.
~\dr -1 [60] [65] is not bounded. This means an order-by-order expansic
solution cannot be used. Instead, Eq. [61] is viewed as ¢
itﬁrative solution forg, andg, from Eq. [64] is the starting
fne . .
|tterate. The next iteration must solve

du,
T SN
Ids u 1

where 1 has been subtracted from both sides to cause
lead term on the right to be ordg. Based on the original
first-order resonance solution, the beginning part of the q
solution to Eq. [§O] could bai, = —i .tan(s), since this CTQZZ = sin(Bsin 2’7‘) cog27 + 2g,). [66]
solves the left side of Eqg. [60] and is thus a zero-order T 2

solution. After a number of trial perturbation solutions it

was found that a superior function results from perturbinghe complete solution of Eq. [66] has not been obtainec
the argument of the tangent such that = —i tan((s + however, an approximation can be written as

s*)/2 + g). Then rather than add perturbation terms-tdo

tan(s), a perturbation solution is generated for tipéunc- i B .
tion. The form of the solution uses the real parsdfecause 9:= g [COS<2 sin{2r + 291})
if just sis used, each order @f has a term which is exactly 8
the negative of the imaginary part ef There is no reason s( . )]
: ; ! — cog 5 cog2T)sin 2 . 67
for g to contain a function that is known separately. Sub- 2 s27)sin 20, [67]
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The derivative of the first cosine term on the right side of Equndamental should result in a small frequency upshift an

[67] produces exactly the cosine term in Eq. [66]; however, tlidownshift, or a blurring of the resonant frequency.

argument of the sine differs byg2 from the desired value of The Eq. [56] governing equation fgy is second order, and

27, Fortunately the periodicity of @ is given by sin 2, and thus it has two solutions. The second solution is derived b

thus it primarily acts as a small time-dependent phase shifsingu, = —i cot((s + s*)/2 — k) for the solution of Eq.

The argument of the second cosine term on the right side of E§0]. Substitution of this expression in Eq. [60] results in ar

[67] is order B? since sin 3, is order 3. The derivative of equation fork,

cos((B/2)cos(2)sin 2g,) compensates for the inappropriate

second-order terms caused by the derivative of the first cosine dk

term, cos(B/2)sin{2t + 2g,}). Each of the cosine terms in dar - —i sin(

Eq. [67] spawns terms of ord@’. To go to the third iteration

it would be necessary to derive terms that cancel any extrane- .

ous third-order terms generated by the iteration. From the rgsglts and procedures used for the already obtain
Exponentiating the relation log, = log(Cy) — i [ u,ds 9 function, itis found thak, = g, and

used to derive Eq. [60],

gsin 27) cogs + s* — 2k). [73]

i B
ke =5 s< inf27 — 2 )
y: = Cyico93(s + s*) + g)e, [68] 2B [CO 2 sif27 — 29,}

B : 2i
where + cos(2 cog27)sin 2g1>] e [74]

L L . Including both solutions fou,, using superposition, and ex-
Qe = —1 | wds—loglcosz(s + s*) + @)]. [69] ponentiating logy, = log(Cy) — i J u,ds, which was used
to derive the governing equation fat, yields the completg,

For convenience define= g + 3(s* — s), and useu, = —i solution,
tan((s + s*)/2 + g) in Eq. [69],
y: = Cyico93(s + s*) + g)e®
i dhvds + Cysin(y(s + s*) — k)eo= 75
Q.= —i | tan(s+ h)| 1 — 1+ dh/ds d(s + h) 128iN(3(s + s¥) )ets, [75]
[70] where
— log[cog3(s + s*) + g)].
Using the definition oh anddg/dr from Eq. [61] in Eq. [70], Qi = J cotlz(s + s*) — k)ds

it is found that
—log[sin(3(s + s*) — k)]. [76]

Qe = f sin(2s + 2h)sm[25|n 27] dr. [ Using the relation fodk/dr from Eq. [73] in Eq. [76], it is
found that
Becausd),. is orderB, a second-order accurate representation
results by using only, in the definition ofh, B
Q=i | sin(s+ s* — 2k)sin{2 sin 21-} dr. [77]
_ _iE sin(jo — 1)27] B sin(jo + 1)27]
e 8 jo - 1 jO + 1 .
As was the case foQ,, Eq. [77] is orderB and, thus, a

B2 (cos 8 cod(jo— 1)27]) second-order accurate representation results by usingkgnly

[72] in the integrand,

“128\ 4 T -1
wherej, = Jo(B/2), is a constant slightly less than 1. Since iB[sinN(jo—1)27] sin(j,+ 1)27]
jo — 1 is small compared to 1, the first-order term, sjg[¢ Qs = 8 [ jo— 1 - o+ 1 ]
1)27]/(j, — 1), is a very-low-frequency oscillation compared , _
to the fundamental. Depending on the level of experimental B (COS & cod (jo — 1)27]> 78]
resolution, the mixing of the very low frequency with the 128 4 jo— 1 '
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The corresponding function that must be derived from Eq. [54] The argument of the cosine term in the Eq. [75] expressio

is y,, which is the solution of

d ds)\ dy, B
ds|\ds) as| T Y= 0

Using the same strategy which was applied to deyiyét is
found that

[79]

Yo = CyC0q3(s + s*) + pe

+ Cysin(3(s + s*) — pye, [80]
wherepgy = Pei,
i (B
Pe1 = E - E CO{2 sin 21'> , [81]
i B .
Pe2 = B [(co<2 cog27)sin 2pc1)
B .
- cos<2 sin{27 + 2|Oc1}> ) } , [82]
2 i B .
Pe=15 "5 [005(2 sin{2r — 2p51}>
+ cos(i cog27)sin 2p51> } , [83]

Qz = Qus and Qs = Qu.

Bothy, in Eq. [75] andy, in Eq. [80] have a basic sinusoidal

variation with a dominant argument of

sin 4nt

for y, is not just € + s*)/2, but g is also added to this
quantity. Because thg function has not been completely
determined, the obvious question is whether or gotan
contribute to the coefficient af In other words, can part of the
solution ofg have a term that is linear if? The answer is no,
at first order, sincelg/dr as expressed in Eg. [61] is sinusoidal
with no constant term. The same answer appliels, to,, and
ps. Thus, ifg could be determined completely, it may change
the coefficient ofr. The first expected consequence on the
resonant frequency is a small shift downward proportional t
B°/16. This was first noted by Bloch and Siegea®) There is
then a finer grain modification which reduces the value of th
shift by 3%/1024. This next term is smaller by a factor@764.

As mentioned earlier there are terms in, for example,
which cause the resonant frequency to have a lineshape, or un
extremely high resolution, a line structure. This effect is caused |
an Eq. [72] term such asip sin[(j, — 1)27)/[8(j, — 1)], which
may be approximately written as2i(sin[(j, — 1)2])/ 8. Because
this term scales as A/it dominates over othe®,. terms. This
leads to many terms in thg function that have the form of a
product of sinusoids such as

2
(COijoT])(cosig])COS{B sin(jo— 127]|. [86]

The cosine of a sine argument can be written as an infinite su
of terms,

cos{é sin(jo — 1)27]]

—J<2)+2§J<2> an(j, — 1 87
=l g 2 o B cog4n(j, — L)7], [87]

B - B
1 - L 2
s+ s) TJO<2) + zl [JZn(Z) 5 ] [84]
which can be substituted into Eq. [86] to obtain

This means the dominant part of the solution sine and cosine
arguments depends strictly on the real pars.dfrom Eq. [84] 5
it can be seen that the frequency associated with the lead lineacog j 1) (cod g])co{ sin (jo — 1)2.,]}
term has been shifted by the constdy({3/2). This constant is B

slightly less than 1 and has an expansion representation of

(8)-1e 3 [CEO]

= (cog g])(%(g) cog jor] + Y(T)), (88]

n'n! where
2 4 6 8
SO A AN -
16 1024 147456 37748736 5] Y(T)ZEJan(005{107+4H(Jo—1)7]
n=1

The factorial squared denominator means the higher order + cogjor — 4n(jo — 7). (89]
terms are rapidly decreasing in magnitude. Also it can be seen
that only even powers oB appear in Eq. [85], and thus,The argument of the cosine terms in Eq. [89] show :

successive terms are at least smaller by a fact@’4f6. +4n(j, — 1) series of shifts to the basjg coefficient.
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FIG. 1. Magnitude of the analytic solutiop, for « = 1.5 (top curve), compared to the magnitude of the perturbg@ions at dy,/dr (bottom curve).

8. COMPARISONS BETWEEN THE ANALYTIC

strength of the disturbance to the harmonic solution caused by t
AND NUMERICAL SOLUTIONS

perturbation,—iB(cosar) dy,/dr, can be observed by comparing
h q bl basi h uti _ hthis quantity withy,. In Fig. 1, the magnitude of the analytje

T. €Yy, andy, variables are basic to the solution since t golution is plotted in the top curve and the magnitude of th
desired spin-state probability amplitudes can be directly ob- o .

. . . ._perturbation is plotted in the bottom curve. It can be seen that tt
tained from these functions using Eq. [43]. The governmIO o : . .

. : . rturbation is about a third the size wfand at times a larger
second-order Eq. [9] can be readily solved numerically witho on d di he phasi h 6. Th |
difficulty. The disadvantage of the numerical solution is that faction depen 'r,]g on t .e p_ asing, Sl,JC .as ﬁear - [herea
does not give insight into the form of the solution and must Rt of the an'alytltyl SQIUt'On is plotted in Fig. _2 with the real part
solved repeatedly to gauge the effect of changing parame‘?é?he numerlc_al sol_utlon. These curves arein agree_ment to bet
values. On the other hand, the numerical solution can be udg@n 5% The imaginary part of the analygicsolution is plotted
to evaluate the validity of the derived analytic solution. Conit Fig. 3 with the imaginary part of the numerical solution. Thes
parisons of the numerical and analytic solutions can be malgkctions are nearly indistinguishable.
by assumingx = 1.5,8 = 0.3,C,; = 0.5, andC,, = 0.5 A second set of comparisons has been done similar to the fir
in the formula given by Eq. [29]. The solution to Eq. [9] is juswith the exception that now the resonance condiior 2 is
a simple harmonic oscillator whed = 0. Furthermore, the examined. Thus, the analytic solution which is used is given b

[N

VN

0 10 20 30 40

T

FIG. 2. Real part of the analytic solutioyy, for « = 1.5 compared to the real part of the numerical solution.
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T
FIG. 3. Imaginary part of the analytic solution for « = 1.5 compared to the imaginary part of the numerical solution.
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the formula in Eq. [49]. In Fig. 4, the magnitude of the analytic stants must be established. The fundamental functidns,

solution is plotted in the top curve and the magnitude of thend ¥, have been expressed in terms of theandy,
perturbation is plotted in the bottom curve. As before, the magy,ctions derived in Sections 5 and 6. The solution of thi
nitude of the perturbation is about a third the sizeypfand at . . . .
. : ; . second-order differential equations fgr andy, each in-
times a larger fraction depending on the phasing, such asrear

8. The real parts and imaginary parts of the analytic and numeri¥@fVe two arbitrary constants. Becaugeandy, are related
solutions are plotted in Figs. 5 and 6,, respectively. The agreemBKtEQ. [8] at time zero, the four constants must satisfy tw
is good, with a 10% deviation in evidence for the peak size of tkeupled equations,

imaginary part shown in Fig. 6.

9. COMPARISON WITH PREVIOUS RESULTS G,Cyy + G,Cyp = G4Cyy + G,Coy
In order to compare th&, andW¥, solutions of Eq. [43]
with previous results, several relationships between con- GsCp1 + G6Crp = G7Cyy + GgCoo [90]

1]

IBCOSOL'C (dy]/d‘t)|,
aabm——
——

I

0 10 20 30 40

T
FIG. 4. Magnitude of the analytic solution for resonance at = 2.0 (top curve), compared to the magnitude of the perturbgtmysar dy,/dr (bottom curve).
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FIG. 5. Real part of the analytic solutioy, for resonance at = 2.0 compared to the real part of the numerical solution.

The G, constants in Eq. [90] only depend @nand 3, d
g. [90] only dep B G, = eQZ(O)%(O), (05]
— aQi0) dQ
G, =e* dr (0), [91] dQ,
dQ Ge = (dT (0) + 2iDoo) e®O[ -3 — BA, + B*(A; + Ay
G, = (dl (0) + 2iDoo) e[ 3 + BA, + B*(A; + Ay
T o = B(As + A)] + ae®O[~iBA,
+ As+ A)] + ae i BA
PR A 1A + 2B%As — B3(Ag + 3A0)], [96]
+ ZBZAS + Bs(As + 3Ay) ], [92]
G3 — —ieQZ‘O), [93] G7 = _ite(o), [97]

G, = G; _% —BA; + BZ(As + A) — BS(AG + Al [94] Gg = G?[_% + BA, + BZ(A3+A4) + Bs(A6+A7)]- (98]

0 10 20 7 30 40

T

FIG. 6. Imaginary part of the analytic solution for resonance a& = 2.0 compared to the imaginary part of the numerical solution.
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From Eg. [27] atr = O,

B Ds Dy
Q.(0) = _<a>[D2+ B5+ BZ(D8+3)],

[99]
and the derivative of Eq. [27] is

% (0) = _iDoo_ iB[Dl + BD4 + BZ(DG + D7)]- [100]

From Eq. [40] atr = O,

B Ds Dy
Qx(0) = _<a)[_D2 + B o BZ<D8+ 3)],

and the derivative of Eq. [40] is

[101]

% (0) = =iDgo — iB[_Dl + BD, — BZ(DG + D7)l [102]

123
where
Gy = (GlGG - G4G7)/(GSGG - G4GS)1 [108]
Gio = (GG — G4Gg)/(G3Gs — G4Gs), [109]
G = (GleS - G3G7)/(G4G5 - Gac‘e)' [110]
G2 = (G,Gs — G3Gg)/(G,Gs — G3Ge). [111]

ThusW¥,(0) and¥,(0) are the only two arbitrary constants, and
the otherC,,, C,,, C,;, andC,, constants associated wijh
andy, depend oy, B, ¥,(0), andW¥,(0).

As mentioned earlier, the results of Bloch and Sieg2®) (
are related to the solutions derived in Sections 5 and 6. The
results can be compared qualitatively by considering the tra
sition probability expression,

LW = alyiy: + yays + yayse e

+ y*iyzei(B/a)SinaT], [112]
where the superscript asterisk indicates a complex conjuga
The time variation of all four terms on the right side of Eq.
[112] is analogous, and thus onfyy?* is expanded and ana-

The two relations in Eq. [90] with the initial conditionslyzed,

applied to Eq. [43],

3¥1(0) + 3y,(0) = ¥,(0)

3¥1(0) = 3y,(0) = ¥,(0), [103]

completely defin€4;, C,,, C,;, andC,, in terms of¥,(0) and
V,(0),

i'W,(0)(Gg - G3Gio — G4Gypp)
— 1W,(0)(Gg + G3Gy + G,Gyo)

C,, = , [104
1= G (GyGro + GiGrs) — Gy(GyGo + GGy * 1104
1W,(0)(Gy — G4Gy — G4Gy2)
—iv,(0)(G, + GGy, + G,G
C12 2( )( 7 3“9 4 11) [105]

T Gy(G3Gy + G4G11) — G7(G3Gig + G4Grp)
Cor = [1W1(0)(Gy(Gg — G4G1y) + G1o(G,G11 — G))

— iW,(0)(Go(Gg + G,G1s) — Gio(Gy

+ G,G11))1/[G#(G3G1o + G4Gio)

— Gg(G4Gy + G,G1y)], [106]
Cyy = [1W1(0)(G11(Gg — G4G1o) + G1a(G3sGs — Go))
— iW,(0)(Gy1(Gg + G3Gi1o) — Gix(G;
+ G43Gy)) /[G1(G3G1o + G,G1r)

- GS(G3GQ + G4Gn)], [107]

Yy = C,,C%,e?M4Q + C,,C* e 2R~ 200 Yorl
+ C,,CH e?RdQu* by, ]

+ C 1,C1e”MUy, Tyt [113]
For brevity, the quantity ¥,,] in Eq. [113] is an abbreviation
for the bracketed terms in Eq. [29], and

B Ds
RQ;] = — « D,cosart + f3 - cos ks
1
+ B?Dgcosart + 3 B2Dgcos ur|. [114]

The first and fourth terms of Eqg. [113] have a time
variation that scales likg8, which is a small parameter
less than 1. The second and third terms of Eq. [113] cor
tain the dominant time variation. Because the two term
are complex conjugates, they may be written as a magn
tude, M = 4|C,,C%,e’*[y, ]| multiplying 3cos 2@ +
Dy7). After some trigonometric algebra, the combina-
tion of the second and third terms produdd/2 —
M([sin(¢ + D7)]°. TheM/2 term has a time variation that
scales like B. The remaining term contains the domi-
nant time variation and shows the sine-squared func
tional form evidenced in Eq. [44] of the Bloch and Sieger
(20) result. The other prominent feature of the Bloch-
Siegert result is the shift in the frequency proportional tc
the square of the ratio of the perpendicular magnetic fiel
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magnitude to the static magnetic field. From Section &,s = 1 + 28%/(16 — B%). The initial values are inserted into
Do = 1 — B%/(4(4 — «?). Thus the dominant time the Section 7 expression fdr, + ¥, to obtain
variation of ¥, ¥*% has the same functional form of the
Bloch and Siegert result, and the frequency shift has they, e~ (#/4sin2r
same scaling.
The RWA which was discussed in the Introduction [((1_(3) (0) + <1+G> (O))
can be compared to the Section 7 resonance solution. Gis
The RWA is derived from Eq. [1] by considering the 1
perpendicular magnetic field to be composed of two X coste P®sin2—(p4)r i(G v,(0)
counterrotating parts and then keeping only the pos- B
Iffle\fg iSrotatlng part. The total perpendicular magnetic —Glls‘lfz(O))[sin @ IBIBIS 25+ (1p/4)7

S i o .
B = (B:X coswt + B,¥ sin wt)/2 + 16—3[32 (4 cost cos 2rg (F®sn zT+<|B/4)T)] ] _

+ (B.X coswt — B,Y sin ot)/2. [115] [123]

The RWA keeps only the first part, The expression in Eq. [123] is to be compared to the solutic

derived from Eq. [118],
B = (B.X coswt + B,y sin wt)/2, [116]
¥, 4+ ¥, = (V,(0) + ¥,(0))coste kA"
and Eq. [1] then becomes ] .
— i(¥,(0) — W,(0))sin re! 4T, [124]

dv, 3
dr

—iv, — |<ﬁ> P ier In the limit of very smallB, it is approximately true thab,; ~
1, G, = 0, andGys ~ 1, thus by comparison, the more
dav, _ . accurate solution in Eq. [123] makes small changes to tt
dr — W - |<4> vet. [117] initial condition values. However, these small changes are ju
sufficient so thay,(0) = ¥,(0) + ¥,(0). Acosttermisin
both Eq. [123] and Eq. [124] but the commen'®?" factor
has a time-varying phase modulation of sizg8/8)sin 2r. A
sin T term also appears in both Eq. [123] and Eq. [124], but th
= (cost — i sin 7)<\If1(0)cosB T — iW,(0)sint T) commone'®¥" factor has a time-varying phase modulation of
4 sizei(B/8)sin 2r. The largest difference between Eq. [123] anc
B Eq. [124] is the totally new term that appears, proportional t
W, = (cost + i sin 7)<\If2(0)cos4 T— i\l’l(O)sinZ 7). the small parametes. It is similar to the cog term; however,
it is also multiplied by cos 2 Because coscos Zr = (cosT +
[118] cos 3)/2, this term can also be viewed as a further modifica
tion to the original cosr term plus an entirely new third
For the Section 7 solution, th€; constants are defined inharmonic contribution. The third harmonic is no longer &
terms of initial ¥,(0) and¥,(0), modification to the RWA solution in Eq. [124], but is rather a
new feature which arises from including the total magneti
G G field of Eqg. [115]. Since the phase modulation and also th
Cy= (1 - GM) v,(0) + (1 + GM) ¥,(0), [119] third harmonic term scale & the difference between the Eq.
13 13 [123] and Eq. [124] solutions is more apparent as the relativ

1 W,(0) - 1 v,(0), (120] strength of the perpendicular time-varying magnetic field i
G 't 2 increased.

For o = 2, the solution is

Cp=

c.. <1+(C;51) (0) - (1_21) (0), [121] 10. CONCLUSIONS

The time evolution of the probability amplitudes of an
(0) + 1 V,(0) [122] electron in a magnetic field oriented in tledirection, per-

G turbed by a perpendicular time-varying magnetic field, ha

been studied. For the situation of isolated spins, analytici

whereG,; = 1 — 28%/(16 — B?), G, = 4B/(16 — B?), and expressions have been derived for the time dependence of |

1
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