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rientation when subjected to a time-varying magnetic field which is
irected perpendicular to the static magnetic field. This well-known
henomenon is readily calculated when the time-varying magnetic
eld is circularly polarized; however, the evolution of the spin-state
avefunctions becomes much more difficult to calculate when the

ime-varying magnetic field is linearly polarized. For linear polariza-
ion and isolated spins, an analytic solution has been derived for the
ynamical spin-state wavefunctions. Part of the solution procedure
elies on an expansion using a small parameter, which is the ratio of
he amplitude of the time-varying magnetic field to the static mag-
etic field. To verify the validity of the expansion technique, a nu-
erical solution of the basic equations is compared to the analytic

olution. Results are found to agree to better than 10% for exact
esonance and better than 5% in general. © 1999 Academic Press

Key Words: electron spin resonance; ESR; electron spin transi-
ion; analytic electron spin solution; fermion spin transition; ro-
ating wave approximation.

1. INTRODUCTION

Properties of matter have been studied for decades using
romagnetic resonances. One of the typical examples of th
eavor is the study of properties of matter utilizing the trans
etween two energy levels. Early work in this area was don
eynman (1) in which it was shown that a geometrical repres

ation can be ascribed to the two-level Schro¨dinger equation. Fo
agnetic interaction with a spin-1

2 system, he demonstrated t
he three-dimensional geometric representation reduces to
al space. This means techniques developed for the spin-1

2 system
an be adapted to other two-level problems, where the
imensions are no longer in general physical space. In
ords, the classical vector model for spin precession appli
ny two-level transition, subject only to several restrictions on

nteraction matrix elements. Consistent with this viewpo
bragam (2) describes the general problem of two levels cou
y an RF field, where he introduces by analogy the notio
ctitious spin and fictitious magnetic field. Several of his ex

1 Work was performed under the auspices of the Department of Ene
awrence Livermore National Laboratory under Contract W-7405-ENG
he U.S. Government’s right to retain a nonexclusive royalty-free licen
nd to the copyright covering this paper, for governmental purposes,
nowledged.
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uadrupole interaction, and the problem of the populations o
tates that include electronic and nuclear spin. A two-level ato
onsidered by Levenson (3) for the application of laser spectrosco
e derives a master equation for the transition between lev

he density matrix formulation which reduces (upon settingr11 5

22 5 0) to the mathematically equivalent set of equations tha
e applied later to electron spin. Letokhov and Chebotaye4)
onsider an isolated two-level system ignoring relaxation
amping and again derives the mathematically equivalent s
quations later applied to electron spin. Any system that ha
athematically equivalent set of equations as those for ele

pin will also have the same solution. It is only necessar
nterpret the electron spin solution in terms of nuclear spin, a
f electron and nuclear spins, or elements of a density mat
The general physical model under consideration in this w

s a two-level system immersed in a static magnetic field
lso subject to a perpendicular time-varying field. The per
icular time-varying magnetic field causes transitions betw

he two energy levels. In particular, for particles with sp12
uch as an electron, there can only be two possible spin
ith respect to a direction in space defined by a static mag
eld. In either of these states, when subject to a time-var
erpendicular magnetic field, the electron spin can chang
rientation. The time dependence of this behavior is rea
alculated for a time-varying, circularly polarized perpend
ar field as shown by Rabi (5). When the perpendicular field
inearly polarized, the evolution of the state occupations
omes much more difficult to calculate. Due to the relative
f solving the circularly polarized case (6), many researche
7–17) use the rotating-wave approximation (RWA). T
WA is not invoked when a system is modeled with a dr

hat is truly circularly polarized (5, 6). The RWA is used whe
he time-varying perpendicular field is truly linearly polariz
nd it is represented as being circularly polarized.
A linearly polarized field can be decomposed into two ci

arly polarized fields, rotating in opposite directions. Because
esponse to the two circularly polarized fields can be consid
eparately, there are two common justifications for the RWA.
rst justification is that only one of the two circularly polariz
elds is strongly interacting near resonance, and the other
arly polarized field can be neglected (1). This is reasonab
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because the spin precesses around the direction established by the
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110 JOHN K. BOYD
tatic magnetic field. Only one of the circularly polarized fie
otates in the precession direction. The second justification
n time scales. As explained by Gautheyet al. (18), the RWA is
alid if the interaction term is averaged over a time much lo
han the period of the time-varying field, but much shorter tha
tate evolution time.
The RWA is useful; however, it is not universally applica

he experiments of Doddet al. (19) are an extreme situatio
here the ratio of perpendicular time-varying magnetic field to
tatic field is varied from a small value all the way up to 4.
mall values of the ratio, Dodd found that the RWA was satis
ory, but at large values he observed that the spectrum ch
ramatically. In early work, Bloch and Siegert (20) showed the
esonant frequency shifts when the full field is considered, r
han just the RWA. While investigating the Bloch–Siegert s

ei et al.(21) demonstrated that the Autler–Townes energy l
plitting (22) is asymmetric and that the asymmetry can be a
ted to the inclusion of the full driver field, rather than just us

he RWA. The RWA in this case incorrectly predicts that
nergy level splitting is perfectly symmetric. In a study of a sin
ode laser, Vyas and Singh (23) found both transient and secu
ffects when their analysis included the full linear polariza
ather than the RWA. In a study of a related set of three cou
quations, Milonniet al. (24) showed that a two-level ato

nteracting with an electric field can exhibit chaotic behavior
urther determined that the RWA of the same set of equa
oes not manifest chaos. Drummond (25) found he could not us

he RWA since he was concerned with detector respons
ltrafast lasers. He concluded that, on a time scale of a few c

he RWA becomes completely invalid. Fang and Zhou (26) dis-
overed that the combination of both circularly polarized fi
layed an important role in the solution for quantum entr
volution. The RWA left out high-frequency amplitude modu

ion of the quantum entropy evolution. Clearly, all of these
mples demonstrate that the RWA may inadvertently con
hysics which is revealed when the RWA is not used.
In the derivation of spin-state dynamics that follows,

ime-varying perpendicular field is truly linearly polarized a
o RWA is made. This derivation is different than previ
erivations in several respects. A Hamiltonian that is peri

n time was investigated by Shirley (27), which yielded a set o
quations identical in form to those applicable to the elec
pin problem. However, in his work, Floquet’s theorem
nvoked to express the solution of Schro¨dinger’s equation wit

Fourier series expansion leading to an infinite matrix.
pproximated the infinite matrix as a finite dimension ma
nd from this form he derived eigenvalues and eigenfunct

n this work, Floquet’s theorem is not invoked, and no Fou
eries decomposition is made.
Using another approximation, the equations addressed i

ork were solved in a general model employed by Bloch
iegert (20) in which the solution for probability amplitudes
ritten for arbitrary elliptical polarization. This includes line
olarization of the time-varying magnetic field as a limiting c
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epends on the magnitude of the deviation of the driver frequ
rom resonance and also depends on the magnitude of the
ically polarized field. They also solve for a function that de
ines the ratio of the probability amplitudes, rather than

ndividual probability amplitudes. In this work, a solution
erived for the individual probability amplitudes separately. T
rocedure avoids difficulties related to the fact that the rat
robability amplitudes is singular when every spin is definite
ne state. The solution derived in this work relies on an expa
arameter that only depends on the ratio of the magnitude

ime-varying magnetic field to the magnitude of the static m
etic field. There is no linkage of the frequency of the ti
arying field to the expansion parameter.
In many circumstances, electron beams are transported
agnetic field produced by solenoids. The primary directio

he magnetic field produced by a solenoid defines thez axis. In
eneral then, a transported electron will have a spin that is in
f two possible states associated with thez direction defined b

he magnetic field produced by a solenoid. If, in addition, the
time-varying magnetic field perpendicular to thez direction, an

lectron undergoes transitions between these two states. P
xperimental arrangements consist of applying the perpend
agnetic field with a linearly polarized RF field, or an oscilla
ipole magnet, which also corresponds to the case of l
olarization. It is desirable to diagnose electron particle be
hich are immersed in a magnetic field without disturbing

ransport of the beam. One of the attributes of the beam tha
e examined with minimal impact on the transport is the elec
pin. The spin-state wavefunction response to the perpend
iagnostic magnetic field can be related to beam properties
s density and beam size. In this work, a time-dependent so
as been derived for the spin-state probability amplitudes as
ecessary step toward understanding how the electron spin
hen subjected to a perpendicular time-varying magnetic fi
In Section 2, the basic spin-state equations are derived as

f two coupled first-order equations. The derivative in each o
oupled equations is proportional to its own state wavefun
nd a linear coupling term proportional to the other state w
ultiplier which scales like the ratio of the amplitude of
erpendicular magnetic field to thez-directed magnetic field
ecause the perpendicular time-varying magnetic field is ass

o be much smaller than the steadyz-directed magnetic field, th
oupling effect can be viewed as a perturbation. The line
olarized perpendicular magnetic field can be considered
omposed of two parts. The first part has positive phase ad
s time increases, and the second part has negative phase a
s time increases. The source of the difficulty in obtaining the
ependence of the two spin states is illustrated in Section 3, w
n analytic solution is derived for the positive phase advance
f the linearly polarized field. Even though the positive ph
dvance field solution can also be derived for the negative p
dvance field, due to the coupling, it is not possible to obtai

otal perpendicular field solution from any simple combinatio
hese two solutions. To derive the desired solution with a line
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111ELECTRON SPIN TRANSITION SOLUTION FOR ISOLATED ELECTRONS
ulate the spin equation in new variables, as explained in Se
. The actual perturbation solution for each state along with
esonance solution is presented in Sections 5, 6, and 7
nalytic perturbation solutions are compared to the nume
olution of the original equation in Section 8. Good agreem
etween the numerical and analytic solutions is obtained, w
emonstrates the validity of the assumptions used to deriv
nalytic perturbation solution. In Section 9, the derived ana
quations are compared to solutions from previous researc

2. FORMULATION OF THE SPIN EQUATION

An isolated spin system characteristic of a multiampere
ron beam interacting with a magnetic field is considered
stimate of the corresponding number of electrons in this m
an be made assuming a constant current density. For a
adiusa, velocity v̂ 5 v/c, and currentI the relation betwee
urrent density and charge densityr is J 5 I/(pa2) 5 rv̂c, where
is the speed of light in vacuum. Rearranging this expressio
lectron number per volume is thenr/e 5 6.633 1013(I/v̂)(0.01/
)2. For a radius of 0.01 m and a current of 1 amp, the numbe
olume is 6.633 1013/v̂ m23. Each spin interacts with the exter
pplied magnetic field; however, there is a question of wheth
ot there is a spin–spin interaction. This question is answer
omparing the size of the external magnetic field to the mag
eld produced by the magnetic moment of an electron.
agnetic field of the electron can be estimated by the ratio o
agnetic moment of the electron to the cube of a separ
istance between electrons. The inverse cube root of the nu
er volume gives an approximation of the separation bet
lectrons,L 5 2.473 1025(v̂/I)1/3(a/0.01)2/3. Sincev̂ is always les

han 1, a reasonable approximation isL 5 2.47 3 1025. The
lectron magnetic field estimate is thenBelectron 5 (he/4pm)/L3 5
.163 10210. A typical external magnetic field value would ran

rom 0.01 to 0.30 T, and therefore it would be estimated t
bout 109 larger than the electron magnetic field. Thus the g
rning equation does not include spin–spin interaction term
The configuration under study is one of a steady-state

etic field in thez direction, in combination with a time
arying driver field in thex direction. Using spin matrices, t
ime-dependent Schro¨dinger equation (28) becomes

i


t FC1

C2
G 5

e

2m SB0F1 0
0 21G

1 B1cosvtF0 1
1 0GDFC1

C2
G , [1]

hereB0 is the magnitude of the steady-state magnetic fie
he z direction, B1 is the magnitude of the perpendicu
ime-varying magnetic field with frequencyv, e is the magni
ude of the electron charge,m is the electron mass, andi 2 5

1. The functionsC1 andC2 are the probability amplitudes
he two states. Under the condition that the spins are in st
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ility to state 2. The matrix equation in Eq. [1] can be writ
s a system of two simultaneous equations,

dC1

dt
5 2iC1 2 iSb

2DC2cosat

dC2

dt
5 iC2 2 iSb

2DC1cosat, [2]

herev 0 5 eB0/(2m), v 1 5 eB1/m, a 5 v/v 0, b 5 v 1/v 0,
ndt 5 v 0t. Note that becauseB1 ! B0 the cosat term in
q. [2], which is order unity, is multiplied by a parameteb
hich is small compared to the order unity first term on

ight. To maintain consistency with the exclusion of spin–s
nteraction in Eq. [1],b , 1; however,b $ 1026, so it
ominates the size of the spin–spin interaction. The compl

nvolved in the solution of Eq. [2] is due to the fact that the
t term can be considered to be a sum of two time-var
rives which have positive and negative phase advance.
transform into either the negative phase or the positive p
dvance frame can eliminate only one of the two. Having
hases present, which is the situation for linear polariza
esults in one direction coinciding with the precession direc
f the electron spin and thus interacting strongly. The opp
hase advance component only interacts weakly.

3. SOLUTION FOR ONLY ONE DIRECTION OF
PHASE ADVANCE IN THE DRIVER

By definition, cos at [ (eiat 1 e2iat)/ 2 and thus a
iscussed, Eq. [2] includes both directions of phase adv
o determine the solution resulting from the effect of just
ositive phase advance part,eiat, of the complete perturbatio

erm, for the moment consider a revised set of equations,
nly one part of the cosine included:

dC1

dt
5 2iC1 2 iSb

2DC2e
iat

dC2

dt
5 iC2 2 iSb

2DC1e
iat. [3]

he form of Eq. [3] is not the RWA because ay direction field
ultiplying they spin matrix was excluded from Eq. [1]. On

he x component of the perpendicular field has been inclu
nd thus the decomposition that is in view in Eq. [3] is so
f the cosat function. After substituting new variables,w 1 [

1e
it and w 2 [ C 2e

2it, Eq. [3] becomes

dw1

dt
5 2iSb

2Dw2e
i ~a12!t

dw2

dt
5 2iSb

2Dw1e
i ~a22!t. [4]
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e

E sse
f of
w

w nd
p o
I b
c ike
E the
f [2
b
e . [2
H to
u sti
t

the
i ]. F
e
u as
t to
s nsi
o ,
t vie
i icu
m d
t i-
t

T

sin
a inu
a soi
w

For general values of the time, a derivative of the first
e ing
y

A be
o
w
r
S

H the
s [10]
t as a
s lti-
m
m
n

e
v q. [9]
c aram-
e s than
t y
r q. [9]
i
t
c tion,

T
t .
A n of
E
w ].
S

w -
t

112 JOHN K. BOYD
quation in Eq. [4] and changing the dependent variable tom [ eiat,

d2w1

dm 2 2 S 2

amD dw1

dm
2 S b

2aD
2

w1 5 0. [5]

quation [5] has the form of the differential equation for Be
unctions and has as its solution the product of a powerm
ith a Bessel functionJk((ib/ 2a) m). Thus,

w1 5 m kJk, [6]

herek [ (a 1 2)/(2a). The order of the Bessel function a
ower ofm are determined by the selection of frequency ratia.

n like manner, a solution similar to Eq. [6] can be obtained
hangingeiat to e2iat in Eq. [3] and again deriving an equation l
q. [5]. Unfortunately, no combination of functions having

orm of such solutions can be made into a solution of Eq.
ecause cosat can be written as a sum of two exponentials (eiat 1
2iat)/2, and both exponentials appear simultaneously in Eq
owever, the solvable form of Eq. [4] gives some insight in
seful variable substitution, and the appropriate variable sub

ion leads ultimately to a tractable solution.

4. FORMULATION OF THE SPIN EQUATION
IN NEW VARIABLES

Insight into the form of the desired solution is provided by
ntegral representation of the Bessel function appearing in Eq. [6
xample, ifa 5 2 thenk 5 1 andJ1(p) 5 (1/p) *0

p cos(p sinu 2
)du. Since argumentp depends onm and cosine can be written

he sum of two exponentials, it can be seen from Eq. [6] that the
olution with both directions of phase advance is likely to co
f a form having an exponential of a function ofm. Furthermore

he sum and difference of the original spin states provides a
nto the two phase directions of the decomposed perpend

agnetic field. Thus after attempting many possibilities base
hese ideas, new variablesy1 andy2 are introduced, with defin
ions consisting of a combination of the original variables.

y1 5 ~C1 1 C2!e
i ~b/ 2a!sin at

y2 5 ~C1 2 C2!e
2i ~b/ 2a!sin at [7]

he differential equations satisfied byy1 andy2 are

d y1

dt
5 2iy2e

i ~b/a!sin at

d y2

dt
5 2iy1e

2i ~b/a!sin at. [8]

For smallt, the form of Eq. [8] is reminiscent of Eq. [4] since (
t)/a ' t; however, the sign in the exponentials is plus and m
nd consequently the early time solution is a sum of sinu
ith frequencies [b 1 =b2 1 4]/2 and [=b2 1 4 2 b]/2.
l

y

],

].
a
tu-

or

tal
st

w
lar
on

s
ds

quation in Eq. [8] is taken to form an equation only involv
1. The basic equation to be solved is then

d2y1

dt 2 2 ~ib cosat!
d y1

dt
1 y1 5 0. [9]

n interesting insight into the solution of Eq. [9] can
btained by making a substitution ofy1 5 q(t)ei (b/ 2a)sin at,
hich transforms Eq. [9] into an equation for the variableq(t),

esulting in a form very similar to Hill’s equation (29) in his
ection 18.22, Eq. [1] and Eq. [2],

d2q

dt 2 1 ~1
8!~8 1 b 2 1 b 2cos~2at! 2 4iba sin at!q 5 0.

[10]

ill’s equation is a Mathieu-like equation which arises in
tudy of the lunar perigee problem. It can be seen from Eq.
hat the behavior is like an oscillator with a frequency that h
mall dependence ont. This leads to the conclusion that u
ately the solution must involve all harmonics ofeiat. Further-
ore, it conveys the expectation that the solutiony1 consists of a
early harmonic oscillator solution modulated byei(b/2a)sinat.

5. PERTURBATION SOLUTION FOR y1

The oscillator form of Eq. [10] withb ! 8 has a small tim
ariation of the frequency, which suggests that the solution of E
an be obtained using perturbation methods with a smallness p
ter ofb. Because the perpendicular magnetic field is always les

he static field, it is always true thatb , 1. To more succinctl
epresent the perturbation solution and also avoid secularities, E
s converted to a driven Riccati equation (30), Eq. [1.1], by making
he substitution, log(y1) 5 log(C# 11) 2 i * u1dt, whereC# 11 is a
onstant. This relation produces a first-order nonlinear equa

du1

dt
2 ~ib cosat!u1 2 iu 1

2 5 2i . [11]

he spin solutiony1 is obtained by solving Eq. [11] foru1 first,
hen integrating with respect tot, and finally exponentiating
ssuming that a particular solution can be found, the solutio
q. [11] can be written as a sum of two functionsu1 5 up1 1 1/v1,
here the first function,up1, is a particular solution of Eq. [11
ubstituting into Eq. [11] gives the equation

dv1

dt
1 ~i2up1 1 ib cosat!v1 5 2i , [12]

hich must be solved byv1. This is just a first-order differen
ial equation with solution

v1 5 C# 12e
2P1 2 ie2P1 E eP1dt, [13]



whereC# 12 is a constant. For convenience, defineQ1(t) 5 2i
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113ELECTRON SPIN TRANSITION SOLUTION FOR ISOLATED ELECTRONS
up1dt and then

P1~t! 5 i ~b/a!sin~at! 2 2Q1~t!. [14]

he arbitrary constantsC# 11 and C# 12 provide the flexibility
eeded to specify the initial value and derivative ofy1. Using
q. [13], the reciprocal function can be expressed as

1

v1
5 i

d

dt
~log@C# 12 2 i E eP1dt#!, [15]

hich, when substituted into the definition ofy1, leads to a
odified expression for the solution

y1 5 eQ1@C11 2 iC12 E eP1dt#, [16]

ith new coefficients defined in terms of the original arbitr
oefficients,C11 5 C# 11C# 12 and C12 5 C# 11. The complete
olution of Eq. [11] is determined if a particular solution,up1, can
e found, since this is the function that is fundamental to
etermination ofP1(t) andQ1(t). A particular perturbation solu

ion of Eq. [11] can be determined at each order inb, by assuming

up1 5 1 1 bf1 1 b 2f2 1 b 3f3 1 · · · , [17]

here only terms up to third order inb are kept. It is clear tha
he series could continue out to any desired order wi
onsequent increase in complexity. It is found at orderb, the
quation that must be solved is

df1

dt
2 i cosat 2 2if 1 5 0. [18]

quation [18] is a first-order equation that can be rea
olved yielding

f1 5 D1cosat 1 iD 2sin at, [19]

here

D1 5
2

a 2 2 4

D2 5
a

a 2 2 4
. [20]

t is required thata Þ 2 to prevent a singular solution; the situat
f a 5 2 which is the resonance conditionv 5 2v0 will be discusse

ater in Section 7. The equation that must be solved at orderb2 is

df2

dt
2 i ~cosat! f1 2 2if 2 2 if 1

2 5 0, [21]
e

a

y

olution

f2 5 D3 1 D4cos 2at 1 iD 5sin 2at, [22]

here

D3 5 2
1

4~a 2 2 4!

D4 5
4 1 a 2

4~a 2 2 4! 2

D5 5
a

~a 2 2 4! 2 . [23]

The equation that must be solved at orderb3 is

df3

dt
2 i ~cosat! f2 2 2if 3 2 2if 1 f2 5 0, [24]

hich is again an analytically solvable first-order equa
aving solution

f3 5 D6cosat 1 D7cos 3at 1 iD 8sin at 1 iD 9sin 3at,

[25]

here

D6 5
9a 4 2 4a 2

~a 2 2 4! 2~80a 2 2 32 2 18a 4!

D7 5
212a 2 2 5a 4

~a 2 2 4! 2~80a 2 2 32 2 18a 4!

D8 5
32a 3 2 16a 1 9a 5

~a 2 2 4! 2~320a 2 2 1282 72a 4!

D9 5
216a 2 48a 3 2 3a 5

~a 2 2 4! 2~320a 2 2 1282 72a 4!
. [26]

In order that coefficientsD 7, D 8, andD 9 remain finite,a Þ
. Now knowing the particular solution from the definition

1, it is found that

Q1~t! 5 2i E ~1 1 bf1 1 b 2f2 1 b 3f3!dt

5 2iD 00t 2 Sb

aDF iD 1sin at 1 D2cosat

1 ib
D4

2
sin 2at 1 b

D5

2
cos 2at

1 ib 2D6sin at 1 1
3ib

2D7sin 3at

1 b 2D8cosat 1 1
3b

2D9cos 3atG , [27]



where D 00 5 1 1 b 2D 3. The Eq. [27] result can be in-
s to
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erted into Eq. [16], which leaves only one integral
e determined to obtain the entire solution. The inte

ion is performed by breakingP1(t) into two integrand
arts as

2i E eP1dt 5 2i E e2iD00t@ei ~b/a!sin at22Q122iD 00t#dt. [28]

The function in the square bracket in Eq. [28] is expande
hird order inb, and the integration is performed. This pro
ure is the key to avoiding an expansion in terms of Be

unctions leading to secularities and intractable integrals.
olution is obtained upon integrating Eq. [28] and substitu
nto Eq. [16]

y1 5 C11e
Q1 1 C12e

Q112iD 00t@2 1
2 1 bA1cosat

1 ibA2sin at 1 b 2A3 1 b 2A4cos 2at

1 b 2A5sin 2at 1 b 3A6cosat 1 b 3A7cos 3at

1 b 3A8sin at 1 b 3A9sin 3at#. [29]

In Eq. [29], every term in the square bracket is bounded
he real part ofQ1(t) consists solely of trigonometric fun
ions, which means ast3 ` the magnitude ofy1 is bounded
onsequently,y1 is normalizable. Also as a check, in the lim
s b 3 0, in Eq. [29] the proper form of the solution
ecovered compared to the solution of Eq. [9] whenb is set to
ero,y1 5 C11e

2it 2 (1
2)C12e

it. The first-order coefficients
q. [29] are defined as

A1 5
D0

4 2 a 2 2
4D2

a~4 2 a 2!

A2 5
2D2

4 2 a 2 2
2D0

a~4 2 a 2!
, [30]

hereD 0 5 1 1 2D 1. The coefficients in Eq. [29] that a
econd order inb are

A3 5
D 0

2

8a 2 2
D2

2a 2 1
D3

2

A4 5
1

8 2 8a 2 F4D0D2

a
2

D 0
2

a 2 2
4D 2

2

a 2 1 4D4 2
4D5

a G
A5 5

1

8 2 8a 2 FD 0
2

a
2

4D0D2

a 2 1
4D 2

2

a
2

4D4

a
1 4D5G .

[31]

n order for theA4 andA5 coefficients to remain finitea Þ 1.
-

to
-
el
e
g

d

A6 5
1

4 2 a 2 FD 0
2D2

2a 3 2
D 0

3

8a 2 1
D0D 2

2

2a 2 2
8D0D3

4 2 a 2

1
32D2D3

a~4 2 a 2!
2

4D2D3

a
2

2D 2
3

a 3 1
D0D4

a 2

1
D2D4

a
2

D0D5

2a
2

2D2D5

a 2 1 2D6 2
4D8

a G
A7 5

1

96 2 216a 2 F3D 0
3

a 2 2
12D 0

2D2

a 3 1
36D0D 2

2

a 2 2
16D 2

3

a 3

2
24D0D4

a 2 1
72D2D4

a
1

36D0D5

a

2
48D2D5

a 2 1 48D7 2
32D9

a G
A8 5

1

4 2 a 2 F D 0
3

4a 3 2
D 0

2D2

4a 2 2
D0D 2

2

a 3 1
D 2

3

a 2 2
16D2D3

4 2 a 2

1
16D0D3

a
2

2D0D3

a
2

D0D4

2a
2

2D2D4

a 2

1 2D8 1
D0D5

a 2 1
D2D5

a
2

4D6

a G
A9 5

1

48 2 108a 2 F9D 0
2D2

a 2 2
D 0

3

a 3 2
12D0D 2

2

a 3 1
12D 2

3

a 2

1
18D0D4

a
2

24D2D4

a 2 1 24D9 2
12D0D5

a 2

1
36D2D5

a
2

16D7

a G . [32]

6. PERTURBATION SOLUTION FOR y2

In order to obtainy2, a second-order equation similar to E
9] must be solved.

d2y2

dt 2 1 ~ib cosat!
d y2

dt
1 y2 5 0. [33]

t is possible to proceed as described previously in Eqs. [
32] to obtain y2. By making the substitution, log(y2) 5
og(C# 21) 2 i * u2dt, Eq. [33] is converted to a driven Ricc
quation, whereC# 21 is a constant and this relation then giv

du2

dt
1 ~ib cosat!u2 2 iu 2

2 5 2i . [34]

he solution fory2 is obtained by solving Eq. [34] foru2 first,
hen integrating with respect tot, and finally exponentiating
he solution of Eq. [34] can be written as a sum of



functionsu2 5 up2 1 1/v 2, where the first function,up2, is a
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articular solution of Eq. [34]. Similar to the previous disc
ion, the equation satisfied byv2 leads to the solution

v2 5 C# 22e
2P2 2 ie2P2 E eP2dt, [35]

hereC# 22 is a constant. DefineQ2(t) 5 2i * up2dt, and then

P2~t! 5 2i ~b/a!sin~at! 2 2Q2~t!. [36]

Using Eq. [35], the part of the total solution given by
eciprocal function can be expressed as

1

v2
5 i

d

dt
~log@C# 22 2 i E eP2dt#!, [37]

hich, when substituted into the definition ofy2, gives the
ollowing expression for the solution

y2 5 eQ2@C21 2 iC22 E eP2dt#, [38]

hereC21 5 C# 21C# 22 andC22 5 C# 21. The complete solution o
q. [34] is determined when a particular solution,up2, is found.
particular perturbation solution to Eq. [34] is determine

ach order inb, by assuming

up2 5 1 2 bf1 1 b 2f2 2 b 3f3 1 · · · , [39]

here only terms up to third order inb are used. It is found a
rderb that the equation that must be solved is the same a

18], the equation at orderb2 is identical to Eq. [21], and th
quation to be solved at orderb3 is the same as Eq. [24]. Thu

he previously obtainedf functions are the particular soluti
o Eq. [34]. Now, knowing the particular solution, it is inser
nto the definition ofQ2, and it is found

Q2~t! 5 2i E ~1 2 bf1 1 b 2f2 2 b 3f3!dt

5 2iD 00t 2 Sb

aDF 2iD 1sin at 2 D2cosat

1 ib
D4

2
sin 2at 1 b

D5

2
cos 2at

2 ib 2D6sin at 2 1
3ib

2D7sin 3at

2 b 2D8cosat 2 1
3b

2D9cos 3atG . [40]
-

t

q.

eaves, as before, only one integral to be determined to g
ntire solution. The integration is performed by breakingP2(t)

nto two integrand parts as

2i E eP2dt 5 2i E e2iD00t@e2i ~b/a!sin at22Q222iD 00t#dt. @41#

he function in the square bracket in Eq. [41] is expande
hird order inb, and the integration is performed. Upon in
rating Eq. [41] and substituting into Eq. [38],

y2 5 C21e
Q2 1 C22e

Q212iD 00t@21
2 2 bA1cosat

2 ibA2sin at 1 b 2A3 1 b 2A4cos 2at

1 b 2A5sin 2at 2 b 3A6cosat 2 b 3A7cos 3at

2 b 3A8sin at 2 b 3A9sin 3at#. [42]

The originally desiredC1 and C2 functions are obtaine
rom Eq. [7],

C1 5
y1

2
e2~ib/ 2a!sin at 1

y2

2
e~ib/ 2a!sin at

C2 5
y1

2
e2~ib/ 2a!sin at 2

y2

2
e~ib/ 2a!sin at, [43]

here they1 function is obtained from Eq. [29] andy2 is
ritten in Eq. [42].

7. FIRST-ORDER RESONANCE SOLUTION

The method of solution described in Section 5 relied on
etermination of a particular solution of Eq. [11]. The partic
olution that was determined is subject to the restriction thata Þ
to prevent a singularity in the coefficients of the first-ordef1

unction. It was also noted thata Þ 2
3 anda Þ 1 are additiona

estrictions that are associated with the second- and third-of
unctions. Consequently, in the first part of this section, the
ion is restricted to a first-orderb expansion. Ifa is allowed to be
, Eq. [18] can still be solved; however, the solution is lineart.
his is not allowed since the solution becomes unbounded
eal with this issue, it is possible to begin again and solve
ore elaborate zero-order, particular solution of Eq. [11],

df0

dt
2 if 0

2 5 2i . [44]

The solution of Eq. [44] can be written with an arbitra
oefficientC31,

f0 5
1 2 C31e

2it

1 1 C31e
2it . [45]
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0 5 1. Here to avoid the singularityC31 5 1, and thenf 0 5
i tan t. As a result of this choice,

e2i * f0dt 5
1

~cost! 2 . [46]

or the resonance solution, only the first-orderb correction is
ought and thus onlyf 1 is needed. The solution of Eq. [18]
ritten using Eq. [45] withC31 5 1,

f1 5 e2i * f0dt9~ 1
16 1 i E ~cos 2t! f0e

22i*f0dt9dt!

5 1
2 sin2t. [47]

oing out to first order,Q1 5 2i * ( f 0 1 bf 1)dt, and then

eQ1 5 ~cost!e2~ibt /4!1~ib/8!sin 2t. [48]

sing Eq. [48] in Eq. [16] and keeping only terms up to fi
rder

y1 5 e~ib/8!sin 2tFC11coste2~ib/4!t 2 iC12

3 Fsin te~ib/4!sin 2t1~ib/4!t

1
ib

16 2 b 2 ~4 cost cos 2te~ib/4!t!GG . [49]

As in Section 6, the functions used to determiney1 are again
sed to determiney2, thus to first order,Q2 5 2i * ( f 0 2
f 1)dt, and then

eQ2 5 ~cost!e~ibt /4!2~ib/8!sin 2t. [50]

he expression of Eq. [50] foreQ2 is used in Eq. [38] keepin
nly terms up to first order inb

y2 5 e2~ib/8!sin 2tFC21coste~ib/4!t

2 iC22Fsin te2~ib/4!sin 2t2~ib/4!t

2
ib

16 2 b 2 ~4 cost cos 2te2~ib/4!t!GG . [51]

he procedure described up to this point cannot be appli
btain a second-order accurate solution. The difficulty is
ecular terms appear and the solution becomes unbound
ain more information about the resonance solution at h
t

to
at
To

er

y introducing a new “time” coordinates, that is more natura
o Eq. [8]. The objective is to permit the dependent variab
ontain as much of the characteristic behavior as pos
ecauseb is small compared to 1, the new dependent vari
is equal to the time at zero order,

s 5 E ei ~b/ 2!sin 2tdt

5 tJ0Sb

2D 2 iJ1Sb

2D ~cos 2t 2 1!

1 O
n51

` FJ2nSb

2D sin 4nt

2n

2 iJ2n11Sb

2D cos~4n 1 2!t 2 1

2n 1 1 G , [52]

ince the zero-order Bessel functionJ(b/ 2) has a limit of 1
sb 3 0, and higher order Bessel functions have a limi
ero. The variables is close tot in its real part; however,
lso has an additional imaginary part. The real part i

ntegral of cos((b/2)sin 2t) and becauseb is always les
han 1, the real part always increases ast increases. Th
eculiar feature is that for a uniform increase oft, the rate
f increase ofs is not uniform. The imaginary part ofs is an

ntegral of sin((b/2)sin 2t) and because this function is o
nd periodic, the imaginary part ofs oscillates between
mall positive and negative range having an approxim
agnitude ofb/2. Only a small range ofs values is neede

o determines at all times, since

E
np

t01np

ei ~b/ 2!sin 2tdt 5 E
0

t0

ei ~b/ 2!sin 2tdt. [53]

n other words, if the values ofs were tabulated fromt 5 0 to
, this would be sufficient to determines at any value oft.
In terms of thes variable Eq. [8] becomes

d y1

ds
5 2iy2

d y2

ds*
5 2iy1, [54]

nd the second-order equation that needs to be solv
eterminey1 is

d

ds* Sd y1

dsD 1 y1 5 0. [55]
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he second derivative is with respect to the complex conju
*, not just the variables. The general form of Eq. [55] is th
f an oscillator in an unusual variable space. To make fu
rogress toward an analytic solution ofy1, Eq. [55] is con
erted usingd/ds* 5 (ds/ds*)( d/ds),

d2y1

ds2 1 y1S ds

dtD
22

5 0, [56]

here

S ds

dtD
22

5 e2ib sin 2t~s!. [57]

In order to write Eq. [57] there must be a prescription
xpresst as a function ofs. This can be done order by ord
sing the infinite series from Eq. [52]. To lowest order,

t0~s! 5 s/J0~b/ 2!, [58]

nd to first order inb,

t1~s! 5 s/J0~b/ 2! 1 iJ1~b/ 2!
cos 2t0~s! 2 1

J0~b/ 2!
. [59]

he process can be continued as far as desired. For exa
he expression fort 2(s) would uset 1(s) as the argument to th
osine term in Eq. [59], and then additional terms from
52] would be added.

The solution procedure for Eq. [56] begins by assuming
1 5 log(C11) 2 i * u1ds. The equation that results foru1 is
hen

i
du1

ds
1 u2 2 1 5 S ds

dtD
22

2 1, [60]

here 1 has been subtracted from both sides to caus
ead term on the right to be orderb. Based on the origina
rst-order resonance solution, the beginning part of
olution to Eq. [60] could beu1 5 2i tan(s), since this
olves the left side of Eq. [60] and is thus a zero-o
olution. After a number of trial perturbation solutions
as found that a superior function results from perturb

he argument of the tangent such thatu1 5 2i tan((s 1
*)/ 2 1 g). Then rather than add perturbation terms to2i
an(s), a perturbation solution is generated for theg func-
ion. The form of the solution uses the real part ofs becaus
f just s is used, each order ofg has a term which is exact
he negative of the imaginary part ofs. There is no reaso
or g to contain a function that is known separately. S
te

er

ple,

.

g

the

e

r

g

-

onverting back to the variablet results in

dg

dt
5 2i sinSb

2
sin 2tDcos~s 1 s* 1 2g!, [61]

here Eq. [52] can be used to write the first few terms,

s 1 s* 5 2tJ0~b/ 2! 1 J2~b/ 2!sin 4t

1 ~1/ 2!J4~b/ 2!sin 8t 1 · · · . [62]

The benefit of solving Eq. [61] rather than Eq. [60] is that
onlinearu2 term is absent. It is replaced by a milder non
arity, in the form of the appearance of 2g in the argument o

he cosine in Eq. [61]. The coefficient sin((b/2)sin 2t) in Eq.
61] to lowest order is proportional tob, and thus the first-orde
quation becomes

dg1

dt
5 2i sinSb

2
sin 2tDcos~2t!. [63]

he solution of Eq. [63] is immediate because it was c
tructed to make the right side an exact derivative, and t

g1 5 2
i

b
1

i

b
cosSb

2
sin 2tD . [64]

he second-order equation,

dg2

dt
5 i sinSb

2
sin 2tDsin~2t!sin~2g1!, [65]

as a right-hand side that has the periodicity of sin 2t. Fur-
hermore, the sign of sin(2g1/i ) is always negative and the si
f sin((b/2)sin 2t)sin(2t) is always positive. As a result th
ign of dg2/dt is always positive, andg2 determined by Eq
65] is not bounded. This means an order-by-order expan
olution cannot be used. Instead, Eq. [61] is viewed a
terative solution forg, and g1 from Eq. [64] is the startin
terate. The next iteration must solve

dg2

dt
5 2i sinSb

2
sin 2tDcos~2t 1 2g1!. [66]

he complete solution of Eq. [66] has not been obtai
owever, an approximation can be written as

g2 5
i

b FcosSb

2
sin$2t 1 2g1%D

2 cosSb

2
cos~2t!sin 2g1DG . [67]
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67] produces exactly the cosine term in Eq. [66]; however
rgument of the sine differs by 2g1 from the desired value o
t. Fortunately the periodicity of 2g1 is given by sin 2t, and
hus it primarily acts as a small time-dependent phase
he argument of the second cosine term on the right side o

67] is order b2 since sin 2g1 is order b. The derivative o
os((b/2)cos(2t)sin 2g1) compensates for the inappropri
econd-order terms caused by the derivative of the first c
erm, cos((b/2)sin{2t 1 2g1}). Each of the cosine terms
q. [67] spawns terms of orderb3. To go to the third iteratio

t would be necessary to derive terms that cancel any ext
us third-order terms generated by the iteration.
Exponentiating the relation logy1 5 log(C11) 2 i * u1ds

sed to derive Eq. [60],

y1 5 C11cos~1
2~s 1 s* ! 1 g!eQ1c, [68]

here

Q1c 5 2i E u1ds2 log@cos~1
2~s 1 s* ! 1 g!#. [69]

or convenience defineh [ g 1 1
2(s* 2 s), and useu1 5 2i

an((s 1 s*)/ 2 1 g) in Eq. [69],

Q1c 5 2i E tan~s 1 h!F1 2
dh/ds

1 1 dh/dsGd~s 1 h!

[70]

2 log@cos~1
2~s 1 s* ! 1 g!#.

sing the definition ofh anddg/dt from Eq. [61] in Eq. [70]
t is found that

Q1c 5 2i E sin~2s 1 2h!sinFb

2
sin 2tGdt. [71]

ecauseQ1c is orderb, a second-order accurate representa
esults by using onlyg1 in the definition ofh,

Q1c 5 2
ib

8 Fsin@~ j 0 2 1!2t#

j 0 2 1
2

sin@~ j 0 1 1!2t#

j 0 1 1 G
2

b 2

128 Scos 8t

4
1

cos@~ j 0 2 1!2t#

j 0 2 1 D , [72]

here j 0 5 J0(b/ 2), is a constant slightly less than 1. Sin
0 2 1 is small compared to 1, the first-order term, sin[(j 0 2
)2t]/( j 0 2 1), is a very-low-frequency oscillation compar

o the fundamental. Depending on the level of experime
esolution, the mixing of the very low frequency with t
e

ft.
q.

ne

e-

n

al

ownshift, or a blurring of the resonant frequency.
The Eq. [56] governing equation fory1 is second order, an

hus it has two solutions. The second solution is derive
sing u1 5 2i cot((s 1 s*)/ 2 2 k) for the solution of Eq

60]. Substitution of this expression in Eq. [60] results in
quation fork,

dk

dt
5 2i sinSb

2
sin 2tDcos~s 1 s* 2 2k!. [73]

rom the results and procedures used for the already obt
function, it is found thatk1 5 g1 and

k2 5
i

b FcosSb

2
sin$2t 2 2g1%D

1 cosSb

2
cos~2t!sin 2g1DG 2

2i

b
. [74]

ncluding both solutions foru1, using superposition, and e
onentiating logy1 5 log(C11) 2 i * u1ds, which was use

o derive the governing equation foru1, yields the completey1

olution,

y1 5 C11cos~1
2~s 1 s* ! 1 g!eQ1c

1 C12sin~1
2~s 1 s* ! 2 k!eQ1s, [75]

here

Q1s 5 E cot~1
2~s 1 s* ! 2 k!ds

2log@sin~1
2~s 1 s* ! 2 k!#. [76]

sing the relation fordk/dt from Eq. [73] in Eq. [76], it is
ound that

Q1s 5 i E sin~s 1 s* 2 2k!sinFb

2
sin 2tGdt. [77]

s was the case forQ1c, Eq. [77] is orderb and, thus,
econd-order accurate representation results by using ok1

n the integrand,

Q1s 5
ib

8 Fsin@~ j 0 2 1!2t#

j 0 2 1
2

sin@~ j 0 1 1!2t#

j 0 1 1 G
2

b 2

128 Scos 8t

4
1

cos@~ j 0 2 1!2t#

j 0 2 1 D . [78]
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s y2, which is the solution of

d

ds FS ds

ds* D d y2

dsG 1 y2 5 0. [79]

Using the same strategy which was applied to derivey1, it is
ound that

y2 5 C21cos~1
2~s 1 s* ! 1 pc!e

Q2c

1 C22sin~1
2~s 1 s* ! 2 ps!e

Q2s, [80]

hereps1 5 pc1,

pc1 5
i

b
2

i

b
cosSb

2
sin 2tD , [81]

pc2 5
i

b FScosSb

2
cos~2t!sin 2pc1D

2 cosSb

2
sin$2t 1 2pc1%DDG , [82]

ps2 5
2i

b
2

i

b FcosSb

2
sin$2t 2 2ps1%D

1 cosSb

2
cos~2t!sin 2ps1DG , [83]

2c 5 Q1s and Q2s 5 Q1c.
Bothy1 in Eq. [75] andy2 in Eq. [80] have a basic sinusoid

ariation with a dominant argument of

1
2~s 1 s* ! 5 tJ0Sb

2D 1 O
n51

` FJ2nSb

2D sin 4nt

2n G . [84]

his means the dominant part of the solution sine and co
rguments depends strictly on the real part ofs. From Eq. [84

t can be seen that the frequency associated with the lead
erm has been shifted by the constantJ0(b/ 2). This constant i
lightly less than 1 and has an expansion representation

J0Sb

2D 5 1 1 O
n51

` F ~2b 2/16! n

n!n! G
5 1 2

b 2

16
1

b 4

1024
2

b 6

147456
1

b 8

37748736
2 . . . .

[85]

he factorial squared denominator means the higher
erms are rapidly decreasing in magnitude. Also it can be
hat only even powers ofb appear in Eq. [85], and thu
uccessive terms are at least smaller by a factor ofb2/16.
ne

ar

er
en

or y1 is not just (s 1 s*)/ 2, but g is also added to th
uantity. Because theg function has not been complete
etermined, the obvious question is whether or notg can
ontribute to the coefficient oft. In other words, can part of th
olution ofg have a term that is linear int? The answer is no
t first order, sincedg/dt as expressed in Eq. [61] is sinusoi
ith no constant term. The same answer applies tok, pc, and
s. Thus, if g could be determined completely, it may cha

he coefficient oft. The first expected consequence on
esonant frequency is a small shift downward proportion

2/16. This was first noted by Bloch and Siegert (20). There is
hen a finer grain modification which reduces the value o
hift byb4/1024. This next term is smaller by a factor ofb2/64.
As mentioned earlier there are terms in, for example,Q1c,

hich cause the resonant frequency to have a lineshape, or
xtremely high resolution, a line structure. This effect is cause
n Eq. [72] term such as2ib sin[(j0 2 1)2t]/[8( j0 2 1)], which
ay be approximately written as22i(sin[(j0 2 1)2t])/b. Because

his term scales as 1/b it dominates over otherQ1c terms. This
eads to many terms in they1 function that have the form of
roduct of sinusoids such as

~cos@ j 0t#!~cos@ g#!cosF 2

b
sin@~ j 0 2 1!2t#G . [86]

he cosine of a sine argument can be written as an infinite
f terms,

cosF 2

b
sin@~ j 0 2 1!2t#G
5 J0S 2

bD 1 2 O
n51

`

J2nS 2

bDcos@4n~ j 0 2 1!t#, [87]

hich can be substituted into Eq. [86] to obtain

~cos@ j 0t#!~cos@ g#!cosF 2

b
sin@~ j 0 2 1!2t#G

5 ~cos@ g#!SJ0S 2

bDcos@ j 0t# 1 Y~t!D , [88]

here

Y~t! 5 O
n51

`

J2nS 2

bD ~cos@ j 0t 1 4n~ j 0 2 1!t#

1 cos@ j 0t 2 4n~ j 0 2 1!t#!. [89]

he argument of the cosine terms in Eq. [89] show
4n( j 0 2 1) series of shifts to the basicj 0 coefficient.
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120 JOHN K. BOYD
8. COMPARISONS BETWEEN THE ANALYTIC
AND NUMERICAL SOLUTIONS

The y1 and y2 variables are basic to the solution since
esired spin-state probability amplitudes can be directly

ained from these functions using Eq. [43]. The govern
econd-order Eq. [9] can be readily solved numerically with
ifficulty. The disadvantage of the numerical solution is th
oes not give insight into the form of the solution and mus
olved repeatedly to gauge the effect of changing param
alues. On the other hand, the numerical solution can be
o evaluate the validity of the derived analytic solution. Co
arisons of the numerical and analytic solutions can be m
y assuminga 5 1.5, b 5 0.3, C11 5 0.5, andC12 5 0.5

n the formula given by Eq. [29]. The solution to Eq. [9] is j
simple harmonic oscillator whenb 5 0. Furthermore, th

FIG. 1. Magnitude of the analytic solutiony1 for a 5 1.5 (top curve), c

FIG. 2. Real part of the analytic solutiony1 for a 5
-
g
t

it
e
ter
ed
-
de

trength of the disturbance to the harmonic solution caused b
erturbation,2ib(cosat) dy1/dt, can be observed by compar

his quantity withy1. In Fig. 1, the magnitude of the analyticy1

olution is plotted in the top curve and the magnitude of
erturbation is plotted in the bottom curve. It can be seen tha
erturbation is about a third the size ofy1 and at times a large

raction depending on the phasing, such as neart 5 6. The rea
art of the analyticy1 solution is plotted in Fig. 2 with the real pa
f the numerical solution. These curves are in agreement to

han 5%. The imaginary part of the analyticy1 solution is plotted
n Fig. 3 with the imaginary part of the numerical solution. Th
unctions are nearly indistinguishable.

A second set of comparisons has been done similar to the
ith the exception that now the resonance conditiona 5 2 is
xamined. Thus, the analytic solution which is used is give

pared to the magnitude of the perturbationb cosat d y1/dt (bottom curve).

5 compared to the real part of the numerical solution.
om
1.
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he formula in Eq. [49]. In Fig. 4, the magnitude of the analytiy1

olution is plotted in the top curve and the magnitude of
erturbation is plotted in the bottom curve. As before, the m
itude of the perturbation is about a third the size ofy1 and a

imes a larger fraction depending on the phasing, such as net 5
. The real parts and imaginary parts of the analytic and num
olutions are plotted in Figs. 5 and 6,, respectively. The agree
s good, with a 10% deviation in evidence for the peak size o
maginary part shown in Fig. 6.

9. COMPARISON WITH PREVIOUS RESULTS

In order to compare theC1 andC2 solutions of Eq. [43
ith previous results, several relationships between

FIG. 3. Imaginary part of the analytic solutiony1 for a 5

FIG. 4. Magnitude of the analytic solutiony1 for resonance ata 5 2.0 (top cu
e
-

al
ent
e

n-

tants must be established. The fundamental functionsC1

nd C2, have been expressed in terms of they1 and y2

unctions derived in Sections 5 and 6. The solution of
econd-order differential equations fory1 and y2 each in-
olve two arbitrary constants. Becausey1 andy2 are related
y Eq. [8] at time zero, the four constants must satisfy
oupled equations,

G1C11 1 G2C12 5 G3C21 1 G4C22

G5C21 1 G6C22 5 G7C11 1 G8C12. [90]

compared to the imaginary part of the numerical solution.

), compared to the magnitude of the perturbationb cosat dy1/dt (bottom curve).
1.5
rve
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he Gi constants in Eq. [90] only depend ona andb,

G1 5 eQ1~0!
dQ1

dt
~0!, [91]

G2 5 SdQ1

dt
~0! 1 2iD 00DeQ1~0!@21

2 1 bA1 1 b 2~ A3 1 A4!

1 b 3~ A6 1 A7!# 1 aeQ1~0!@ibA2

1 2b 2A5 1 b 3~ A8 1 3A9!#, [92]

G3 5 2ieQ2~0!, [93]

G4 5 G3@2
1
2 2 bA1 1 b 2~ A3 1 A4! 2 b 3~ A6 1 A7!#, [94]

FIG. 5. Real part of the analytic solutiony1 for resonance

FIG. 6. Imaginary part of the analytic solutiony1 for resonance
G5 5 eQ2~0!
dQ2

dt
~0!, [95]

G6 5 SdQ2

dt
~0! 1 2iD 00DeQ2~0!@21

2 2 bA1 1 b 2~ A3 1 A4!

2 b 3~ A6 1 A7!# 1 aeQ2~0!@2ibA2

1 2b 2A5 2 b 3~ A8 1 3A9!#, [96]

G7 5 2ieQ1~0!, [97]

G8 5 G7@2
1
2 1 bA1 1 b 2~ A3 1 A4! 1 b 3~ A6 1 A7!#. [98]

5 2.0 compared to the real part of the numerical solution.

5 2.0 compared to the imaginary part of the numerical solution.
ata
ata



From Eq. [27] att 5 0,
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Q1~0! 5 2Sb

aDFD2 1 b
D5

2
1 b 2SD8 1

D9

3 DG , [99]

nd the derivative of Eq. [27] is

Q1

dt
~0! 5 2iD 00 2 ib@D1 1 bD4 1 b 2~D6 1 D7!#. [100]

rom Eq. [40] att 5 0,

Q2~0! 5 2Sb

aDF2D2 1 b
D5

2
2 b 2SD8 1

D9

3 DG , [101]

nd the derivative of Eq. [40] is

Q2

dt
~0! 5 2iD 00 2 ib@2D1 1 bD4 2 b 2~D6 1 D7!#. [102]

The two relations in Eq. [90] with the initial conditio
pplied to Eq. [43],

1
2 y1~0! 1 1

2 y2~0! 5 C1~0!

1
2 y1~0! 2 1

2 y2~0! 5 C2~0!, [103]

ompletely defineC11, C12, C21, andC22 in terms ofC1(0) and
2(0),

C11 5

iC1~0!~G8 2 G3G10 2 G4G12!
2 iC2~0!~G8 1 G3G10 1 G4G12!

G7~G3G10 1 G4G12! 2 G8~G3G9 1 G4G11!
, [104]

C12 5

iC1~0!~G7 2 G3G9 2 G4G11!
2 iC2~0!~G7 1 G3G9 1 G4G11!

G8~G3G9 1 G4G11! 2 G7~G3G10 1 G4G12!
, [105]

C21 5 @iC1~0!~G9~G8 2 G4G12! 1 G10~G4G11 2 G7!!

2 iC2~0!~G9~G8 1 G4G12! 2 G10~G7

1 G4G11!!#/@G7~G3G10 1 G4G12!

2 G8~G3G9 1 G4G11!#, [106]

C22 5 @iC1~0!~G11~G8 2 G3G10! 1 G12~G3G9 2 G7!!

2 iC2~0!~G11~G8 1 G3G10! 2 G12~G7

1 G3G9!!#/@G7~G3G10 1 G4G12!

2 G8~G3G9 1 G4G11!#, [107]
G9 5 ~G1G6 2 G4G7!/~G3G6 2 G4G5!, [108]

G10 5 ~G2G6 2 G4G8!/~G3G6 2 G4G5!, [109]

G11 5 ~G1G5 2 G3G7!/~G4G5 2 G3G6!, [110]

G12 5 ~G2G5 2 G3G8!/~G4G5 2 G3G6!. [111]

husC1(0) andC2(0) are the only two arbitrary constants, a
he otherC11, C12, C21, andC22 constants associated withy1

ndy2 depend ona, b, C1(0), andC2(0).
As mentioned earlier, the results of Bloch and Siegert20)

re related to the solutions derived in Sections 5 and 6. T
esults can be compared qualitatively by considering the
ition probability expression,

C1C*1 5 1
4@y1y*1 1 y2y*2 1 y1y*2e

2i ~b/a!sin at

1 y*1y2e
i ~b/a!sin at#, [112]

here the superscript asterisk indicates a complex conju
he time variation of all four terms on the right side of E

112] is analogous, and thus onlyy1y*1 is expanded and an
yzed,

y1y*1 5 C11C*11e
2Re@Q1# 1 C11C*12e

2Re@Q1#22iD 00t@ y*br#

1 C12C*11e
2Re@Q1#12iD 00t@ ybr#

1 C 12C*12e
2Re@Q1#@ ybr#@ y*br#. [113]

or brevity, the quantity [ybr] in Eq. [113] is an abbreviatio
or the bracketed terms in Eq. [29], and

Re@Q1# 5 2Sb

aDFD2cosat 1 b
D5

2
cos 2at

1 b 2D8cosat 1
1

3
b 2D9cos 3atG . [114]

The first and fourth terms of Eq. [113] have a ti
ariation that scales likeb, which is a small paramet

ess than 1. The second and third terms of Eq. [113]
ain the dominant time variation. Because the two te
re complex conjugates, they may be written as a ma

ude, M 5 4uC12C*11e
2Re[Q1 ] [ ybr] u multiplying 1

2cos 2(w 1

00t). After some trigonometric algebra, the combi
ion of the second and third terms produceM / 2 2

[sin(w 1 D 00t)] 2. TheM/ 2 term has a time variation th
cales like b. The remaining term contains the dom
ant time variation and shows the sine-squared f

ional form evidenced in Eq. [44] of the Bloch and Sieg
20) result. The other prominent feature of the Bloc
iegert result is the shift in the frequency proportiona

he square of the ratio of the perpendicular magnetic



magnitude to the static magnetic field. From Section 5,
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00 5 1 2 b 2/(4(4 2 a 2)). Thus the dominant tim
ariation of C1C*1 has the same functional form of t
loch and Siegert result, and the frequency shift has
ame scaling.
The RWA which was discussed in the Introduct

an be compared to the Section 7 resonance solu
he RWA is derived from Eq. [1] by considering t
erpendicular magnetic field to be composed of
ounterrotating parts and then keeping only the p
tive rotating part. The total perpendicular magne
eld is

BW 5 ~B1x̂ cosvt 1 B1ŷ sin vt!/ 2

1 ~B1x̂ cosvt 2 B1ŷ sin vt!/ 2. [115]

he RWA keeps only the first part,

BW 5 ~B1x̂ cosvt 1 B1ŷ sin vt!/ 2, [116]

nd Eq. [1] then becomes

dC1

dt
5 2iC1 2 iSb

4DC2e
2iat

dC2

dt
5 iC2 2 iSb

4DC1e
iat. [117]

or a 5 2, the solution is

C1 5 ~cost 2 i sin t!SC1~0!cos
b

4
t 2 iC2~0!sin

b

4
tD

C2 5 ~cost 1 i sin t!SC2~0!cos
b

4
t 2 iC1~0!sin

b

4
tD .

[118]

or the Section 7 solution, theCij constants are defined
erms of initialC1(0) andC2(0),

C11 5 S1 2
G14

G13
DC1~0! 1 S1 1

G14

G13
DC2~0!, [119]

C12 5
1

G13
C1~0! 2

1

G13
C2~0!, [120]

C21 5 S1 1
G14

G15
DC1~0! 2 S1 2

G14

G15
DC2~0!, [121]

C22 5
1

G15
C1~0! 1

1

G15
C2~0!, [122]

hereG13 5 1 2 2b 2/(16 2 b 2), G14 5 4b/(16 2 b 2), and
e

n.

o
-

he Section 7 expression forC1 1 C2 to obtain

y1e
2~ib/4!sin 2t

5 FSS1 2
G14

G13
DC1~0! 1 S1 1

G14

G13
DC2~0!D

3 coste2~ib/8!sin 2t2~ib/4!t 2 iS 1

G13
C1~0!

2
1

G13
C2~0!D @sin te~ib/8!sin 2t1~ib/4!t

1
ib

16 2 b 2 ~4 cost cos 2te2~ib/8!sin 2t1~ib/4!t!GG .

[123]

The expression in Eq. [123] is to be compared to the solu
erived from Eq. [118],

C1 1 C2 5 ~C1~0! 1 C2~0!!coste2i ~b/4!t

2 i ~C1~0! 2 C2~0!!sin tei ~b/4!t. [124]

n the limit of very smallb, it is approximately true thatG13 '
, G14 ' 0, and G15 ' 1, thus by comparison, the mo
ccurate solution in Eq. [123] makes small changes to

nitial condition values. However, these small changes are
ufficient so thaty1(0) 5 C 1(0) 1 C 2(0). A cost term is in
oth Eq. [123] and Eq. [124] but the commone2i (b/4)t factor
as a time-varying phase modulation of size2i (b/8)sin 2t. A
in t term also appears in both Eq. [123] and Eq. [124], bu
ommonei (b/4)t factor has a time-varying phase modulation
izei (b/8)sin 2t. The largest difference between Eq. [123]
q. [124] is the totally new term that appears, proportiona

he small parameterb. It is similar to the cost term; however
t is also multiplied by cos 2t. Because cost cos 2t 5 (cost 1
os 3t)/2, this term can also be viewed as a further modifi
ion to the original cost term plus an entirely new thir
armonic contribution. The third harmonic is no longe
odification to the RWA solution in Eq. [124], but is rathe
ew feature which arises from including the total magn
eld of Eq. [115]. Since the phase modulation and also
hird harmonic term scale asb, the difference between the E
123] and Eq. [124] solutions is more apparent as the rel
trength of the perpendicular time-varying magnetic fiel
ncreased.

10. CONCLUSIONS

The time evolution of the probability amplitudes of
lectron in a magnetic field oriented in thez direction, per

urbed by a perpendicular time-varying magnetic field,
een studied. For the situation of isolated spins, analy
xpressions have been derived for the time dependence



probability amplitudes. The intent is to apply this solution to
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ain an understanding of an electron beam in a manne
oes not cause current loss. For example, in standard e
ental practice the beam size can be determined by obse

ight generated by striking a material foil; however, this cau
urrent loss and undesirable radial oscillations.
Examples of the analytic solution of the probability am

ude, for situations when the frequency of the time-vary
agnetic field is 1.5 or 2.0 times the frequency associated

he steady-state magnetic field, have been compared to
erical solution of Eq. [9]. Excellent agreement between t

wo solutions and the numerical solution is obtained for
rst example. For the comparison with the frequency of
ime-varying magnetic field twice the frequency associ
ith the steady-state field, the agreement is good, wi
eviation between the solutions for the imaginary part of
pin-state function showing about a 10% discrepancy a
eak values. This is consistent with the derivation of
esonance solution, which is carried out to first-order inb. The
ext correction term would be expected to be approximate

he sizeb2. For the second comparison,b2. 5 0.09, and this i
onsistent with the observed 10% discrepancy.
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